Spaces:
Sleeping
Sleeping
File size: 6,000 Bytes
43b5bef c1e5d4c 518be16 c1e5d4c 0d6849e cc3006a 43b5bef cc3006a cf38aa5 43b5bef c1e5d4c 43b5bef c1e5d4c 518be16 c1e5d4c 518be16 77ac272 6733659 c9870b1 6733659 c9870b1 6733659 c9870b1 6733659 4766698 c9870b1 c1e5d4c c9870b1 6617dfe 4766698 c1e5d4c c9870b1 6617dfe 518be16 77ac272 c1e5d4c c9870b1 d82511d c1e5d4c c9870b1 c1e5d4c cc3006a 0d6849e f32ce56 73c4292 cc3006a 0d6849e cc3006a 0d6849e f32ce56 327109c cc3006a cac494e 640fedc f32ce56 327109c cc3006a cac494e f9c29be f32ce56 327109c cc3006a cac494e 43b5bef 0d6849e 43b5bef c1e5d4c cc3006a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 |
import gradio as gr
import os
import requests
import threading
from datetime import datetime
from typing import List, Dict, Any, Generator
from session_manager import SessionManager
# Initialize session manager and get HF API key
session_manager = SessionManager()
HF_API_KEY = os.getenv("HF_API_KEY")
# Model endpoints configuration
MODEL_ENDPOINTS = {
"Qwen2.5-72B-Instruct": "https://api-inference.huggingface.co/models/Qwen/Qwen2.5-72B-Instruct",
"Llama3.3-70B-Instruct": "https://api-inference.huggingface.co/models/meta-llama/Llama-3.3-70B-Instruct",
"Qwen2.5-Coder-32B-Instruct": "https://api-inference.huggingface.co/models/Qwen/Qwen2.5-Coder-32B-Instruct",
}
def query_model(model_name: str, messages: List[Dict[str, str]]) -> str:
"""Query a single model with the chat history"""
endpoint = MODEL_ENDPOINTS[model_name]
headers = {
"Authorization": f"Bearer {HF_API_KEY}",
"Content-Type": "application/json"
}
# Build full conversation history for context
conversation = "\n".join([f"{msg['role']}: {msg['content']}" for msg in messages])
# Model-specific prompt formatting with full history
model_prompts = {
"Qwen2.5-72B-Instruct": (
f"<|im_start|>system\nCollaborate with other experts. Previous discussion:\n{conversation}<|im_end|>\n"
"<|im_start|>assistant\nMy analysis:"
),
"Llama3.3-70B-Instruct": (
"<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n"
f"Build upon this discussion:\n{conversation}<|eot_id|>\n"
"<|start_header_id|>assistant<|end_header_id|>\nMy contribution:"
),
"Qwen2.5-Coder-32B-Instruct": (
f"<|im_start|>system\nTechnical discussion context:\n{conversation}<|im_end|>\n"
"<|im_start|>assistant\nTechnical perspective:"
)
}
# Model-specific stop sequences
stop_sequences = {
"Qwen2.5-72B-Instruct": ["<|im_end|>", "<|endoftext|>"],
"Llama3.3-70B-Instruct": ["<|eot_id|>", "\nuser:"],
"Qwen2.5-Coder-32B-Instruct": ["<|im_end|>", "<|endoftext|>"]
}
payload = {
"inputs": model_prompts[model_name],
"parameters": {
"max_tokens": 2048,
"temperature": 0.7,
"stop_sequences": stop_sequences[model_name],
"return_full_text": False
}
}
try:
response = requests.post(endpoint, json=payload, headers=headers)
response.raise_for_status()
result = response.json()[0]['generated_text']
# Clean up response formatting
result = result.split('<|')[0] # Remove any remaining special tokens
result = result.replace('**', '').replace('##', '') # Remove markdown
result = result.strip() # Remove leading/trailing whitespace
return result # Return complete response
except Exception as e:
return f"{model_name} error: {str(e)}"
def respond(message: str, history: List[List[str]], session_id: str) -> Generator[str, None, None]:
"""Handle sequential model responses with session tracking"""
# Load session history
session = session_manager.load_session(session_id)
messages = [{"role": "user", "content": message}]
# Store user message and update session
session["history"].append({
"timestamp": datetime.now().isoformat(),
"type": "user",
"content": message
})
session_manager.save_session(session_id, session)
# Get first model's response
response1 = query_model("Qwen2.5-Coder-32B-Instruct", messages)
session["history"].append({
"timestamp": datetime.now().isoformat(),
"type": "assistant",
"model": "Qwen2.5-Coder-32B-Instruct",
"content": response1
})
session_manager.save_session(session_id, session)
yield f"**Qwen2.5-Coder-32B-Instruct**:\n{response1}"
# Add first response to context
messages.append({
"role": "assistant",
"content": f"Previous response: {response1}"
})
# Get second model's response
response2 = query_model("Qwen2.5-72B-Instruct", messages)
session["history"].append({
"timestamp": datetime.now().isoformat(),
"type": "assistant",
"model": "Qwen2.5-72B-Instruct",
"content": response2
})
session_manager.save_session(session_id, session)
yield f"**Qwen2.5-72B-Instruct**:\n{response2}"
# Add second response to context
messages.append({
"role": "assistant",
"content": f"Previous responses: {response1}\n{response2}"
})
# Get final model's response
response3 = query_model("Llama3.3-70B-Instruct", messages)
session["history"].append({
"timestamp": datetime.now().isoformat(),
"type": "assistant",
"model": "Llama3.3-70B-Instruct",
"content": response3
})
session_manager.save_session(session_id, session)
yield f"**Llama3.3-70B-Instruct**:\n{response3}"
# Create the Gradio interface with session management
with gr.Blocks(title="Multi-LLM Collaboration Chat") as demo:
session_id = gr.State(session_manager.create_session)
with gr.Row():
gr.Markdown("## Multi-LLM Collaboration Chat")
new_session_btn = gr.Button("π New Session", variant="secondary")
with gr.Row():
gr.Markdown("A group chat with Qwen2.5-72B, Llama3.3-70B, and Qwen2.5-Coder-32B")
chat_interface = gr.ChatInterface(
respond,
examples=["How can I optimize Python code?", "Explain quantum computing basics"],
additional_inputs=[session_id]
)
def create_new_session():
new_id = session_manager.create_session()
return new_id, None
new_session_btn.click(
fn=create_new_session,
outputs=[session_id, chat_interface.chatbot],
show_progress=False
)
if __name__ == "__main__":
demo.launch(share=True)
|