Spaces:
Running
Running
import logging | |
import random | |
import numpy as np | |
import torch | |
from omegaconf import DictConfig | |
from torch.utils.data import DataLoader, Dataset | |
from torch.utils.data.dataloader import default_collate | |
from torch.utils.data.distributed import DistributedSampler | |
from mmaudio.data.eval.audiocaps import AudioCapsData | |
from mmaudio.data.eval.video_dataset import MovieGen, VGGSound | |
from mmaudio.data.extracted_audio import ExtractedAudio | |
from mmaudio.data.extracted_vgg import ExtractedVGG | |
from mmaudio.data.mm_dataset import MultiModalDataset | |
from mmaudio.utils.dist_utils import local_rank | |
log = logging.getLogger() | |
# Re-seed randomness every time we start a worker | |
def worker_init_fn(worker_id: int): | |
worker_seed = torch.initial_seed() % (2**31) + worker_id + local_rank * 1000 | |
np.random.seed(worker_seed) | |
random.seed(worker_seed) | |
log.debug(f'Worker {worker_id} re-seeded with seed {worker_seed} in rank {local_rank}') | |
def load_vgg_data(cfg: DictConfig, data_cfg: DictConfig) -> Dataset: | |
dataset = ExtractedVGG(tsv_path=data_cfg.tsv, | |
data_dim=cfg.data_dim, | |
premade_mmap_dir=data_cfg.memmap_dir) | |
return dataset | |
def load_audio_data(cfg: DictConfig, data_cfg: DictConfig) -> Dataset: | |
dataset = ExtractedAudio(tsv_path=data_cfg.tsv, | |
data_dim=cfg.data_dim, | |
premade_mmap_dir=data_cfg.memmap_dir) | |
return dataset | |
def setup_training_datasets(cfg: DictConfig) -> tuple[Dataset, DistributedSampler, DataLoader]: | |
if cfg.mini_train: | |
vgg = load_vgg_data(cfg, cfg.data.ExtractedVGG_val) | |
audiocaps = load_audio_data(cfg, cfg.data.AudioCaps) | |
dataset = MultiModalDataset([vgg], [audiocaps]) | |
if cfg.example_train: | |
video = load_vgg_data(cfg, cfg.data.Example_video) | |
audio = load_audio_data(cfg, cfg.data.Example_audio) | |
dataset = MultiModalDataset([video], [audio]) | |
else: | |
# load the largest one first | |
freesound = load_audio_data(cfg, cfg.data.FreeSound) | |
vgg = load_vgg_data(cfg, cfg.data.ExtractedVGG) | |
audiocaps = load_audio_data(cfg, cfg.data.AudioCaps) | |
audioset_sl = load_audio_data(cfg, cfg.data.AudioSetSL) | |
bbcsound = load_audio_data(cfg, cfg.data.BBCSound) | |
clotho = load_audio_data(cfg, cfg.data.Clotho) | |
dataset = MultiModalDataset([vgg] * cfg.vgg_oversample_rate, | |
[audiocaps, audioset_sl, bbcsound, freesound, clotho]) | |
batch_size = cfg.batch_size | |
num_workers = cfg.num_workers | |
pin_memory = cfg.pin_memory | |
sampler, loader = construct_loader(dataset, | |
batch_size, | |
num_workers, | |
shuffle=True, | |
drop_last=True, | |
pin_memory=pin_memory) | |
return dataset, sampler, loader | |
def setup_test_datasets(cfg): | |
dataset = load_vgg_data(cfg, cfg.data.ExtractedVGG_test) | |
batch_size = cfg.batch_size | |
num_workers = cfg.num_workers | |
pin_memory = cfg.pin_memory | |
sampler, loader = construct_loader(dataset, | |
batch_size, | |
num_workers, | |
shuffle=False, | |
drop_last=False, | |
pin_memory=pin_memory) | |
return dataset, sampler, loader | |
def setup_val_datasets(cfg: DictConfig) -> tuple[Dataset, DataLoader, DataLoader]: | |
if cfg.example_train: | |
dataset = load_vgg_data(cfg, cfg.data.Example_video) | |
else: | |
dataset = load_vgg_data(cfg, cfg.data.ExtractedVGG_val) | |
val_batch_size = cfg.batch_size | |
val_eval_batch_size = cfg.eval_batch_size | |
num_workers = cfg.num_workers | |
pin_memory = cfg.pin_memory | |
_, val_loader = construct_loader(dataset, | |
val_batch_size, | |
num_workers, | |
shuffle=False, | |
drop_last=False, | |
pin_memory=pin_memory) | |
_, eval_loader = construct_loader(dataset, | |
val_eval_batch_size, | |
num_workers, | |
shuffle=False, | |
drop_last=False, | |
pin_memory=pin_memory) | |
return dataset, val_loader, eval_loader | |
def setup_eval_dataset(dataset_name: str, cfg: DictConfig) -> tuple[Dataset, DataLoader]: | |
if dataset_name.startswith('audiocaps_full'): | |
dataset = AudioCapsData(cfg.eval_data.AudioCaps_full.audio_path, | |
cfg.eval_data.AudioCaps_full.csv_path) | |
elif dataset_name.startswith('audiocaps'): | |
dataset = AudioCapsData(cfg.eval_data.AudioCaps.audio_path, | |
cfg.eval_data.AudioCaps.csv_path) | |
elif dataset_name.startswith('moviegen'): | |
dataset = MovieGen(cfg.eval_data.MovieGen.video_path, | |
cfg.eval_data.MovieGen.jsonl_path, | |
duration_sec=cfg.duration_s) | |
elif dataset_name.startswith('vggsound'): | |
dataset = VGGSound(cfg.eval_data.VGGSound.video_path, | |
cfg.eval_data.VGGSound.csv_path, | |
duration_sec=cfg.duration_s) | |
else: | |
raise ValueError(f'Invalid dataset name: {dataset_name}') | |
batch_size = cfg.batch_size | |
num_workers = cfg.num_workers | |
pin_memory = cfg.pin_memory | |
_, loader = construct_loader(dataset, | |
batch_size, | |
num_workers, | |
shuffle=False, | |
drop_last=False, | |
pin_memory=pin_memory, | |
error_avoidance=True) | |
return dataset, loader | |
def error_avoidance_collate(batch): | |
batch = list(filter(lambda x: x is not None, batch)) | |
return default_collate(batch) | |
def construct_loader(dataset: Dataset, | |
batch_size: int, | |
num_workers: int, | |
*, | |
shuffle: bool = True, | |
drop_last: bool = True, | |
pin_memory: bool = False, | |
error_avoidance: bool = False) -> tuple[DistributedSampler, DataLoader]: | |
train_sampler = DistributedSampler(dataset, rank=local_rank, shuffle=shuffle) | |
train_loader = DataLoader(dataset, | |
batch_size, | |
sampler=train_sampler, | |
num_workers=num_workers, | |
worker_init_fn=worker_init_fn, | |
drop_last=drop_last, | |
persistent_workers=num_workers > 0, | |
pin_memory=pin_memory, | |
collate_fn=error_avoidance_collate if error_avoidance else None) | |
return train_sampler, train_loader | |