|
## Models
|
|
|
|
We currently offer four text-to-image models. `FLUX1.1 [pro]` is our most capable model which can generate images at up to 4MP while maintaining an impressive generation time of only 10 seconds per sample.
|
|
|
|
| Name | HuggingFace repo | License | sha256sum |
|
|
| ------------------------- | ------------------------------------------------------- | --------------------------------------------------------------------- | ---------------------------------------------------------------- |
|
|
| `FLUX.1 [schnell]` | https://huggingface.co/black-forest-labs/FLUX.1-schnell | [apache-2.0](model_licenses/LICENSE-FLUX1-schnell) | 9403429e0052277ac2a87ad800adece5481eecefd9ed334e1f348723621d2a0a |
|
|
| `FLUX.1 [dev]` | https://huggingface.co/black-forest-labs/FLUX.1-dev | [FLUX.1-dev Non-Commercial License](model_licenses/LICENSE-FLUX1-dev) | 4610115bb0c89560703c892c59ac2742fa821e60ef5871b33493ba544683abd7 |
|
|
| `FLUX.1 [pro]` | [Available in our API](https://docs.bfl.ml/). |
|
|
| `FLUX1.1 [pro]` | [Available in our API](https://docs.bfl.ml/). |
|
|
| `FLUX1.1 [pro] Ultra/raw` | [Available in our API](https://docs.bfl.ml/). |
|
|
|
|
## Open-weights usage
|
|
|
|
The weights will be downloaded automatically from HuggingFace once you start one of the demos. To download `FLUX.1 [dev]`, you will need to be logged in, see [here](https://huggingface.co/docs/huggingface_hub/guides/cli#huggingface-cli-login).
|
|
If you have downloaded the model weights manually, you can specify the downloaded paths via environment-variables:
|
|
|
|
```bash
|
|
export FLUX_SCHNELL=<path_to_flux_schnell_sft_file>
|
|
export FLUX_DEV=<path_to_flux_dev_sft_file>
|
|
export AE=<path_to_ae_sft_file>
|
|
```
|
|
|
|
For interactive sampling run
|
|
|
|
```bash
|
|
python -m flux --name <name> --loop
|
|
```
|
|
|
|
Or to generate a single sample run
|
|
|
|
```bash
|
|
python -m flux --name <name> \
|
|
--height <height> --width <width> \
|
|
--prompt "<prompt>"
|
|
```
|
|
|
|
We also provide a streamlit demo that does both text-to-image and image-to-image. The demo can be run via
|
|
|
|
```bash
|
|
streamlit run demo_st.py
|
|
```
|
|
|
|
We also offer a Gradio-based demo for an interactive experience. To run the Gradio demo:
|
|
|
|
```bash
|
|
python demo_gr.py --name flux-schnell --device cuda
|
|
```
|
|
|
|
Options:
|
|
|
|
- `--name`: Choose the model to use (options: "flux-schnell", "flux-dev")
|
|
- `--device`: Specify the device to use (default: "cuda" if available, otherwise "cpu")
|
|
- `--offload`: Offload model to CPU when not in use
|
|
- `--share`: Create a public link to your demo
|
|
|
|
To run the demo with the dev model and create a public link:
|
|
|
|
```bash
|
|
python demo_gr.py --name flux-dev --share
|
|
```
|
|
|
|
## Diffusers integration
|
|
|
|
`FLUX.1 [schnell]` and `FLUX.1 [dev]` are integrated with the [🧨 diffusers](https://github.com/huggingface/diffusers) library. To use it with diffusers, install it:
|
|
|
|
```shell
|
|
pip install git+https://github.com/huggingface/diffusers.git
|
|
```
|
|
|
|
Then you can use `FluxPipeline` to run the model
|
|
|
|
```python
|
|
import torch
|
|
from diffusers import FluxPipeline
|
|
|
|
model_id = "black-forest-labs/FLUX.1-schnell" #you can also use `black-forest-labs/FLUX.1-dev`
|
|
|
|
pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16)
|
|
pipe.enable_model_cpu_offload() #save some VRAM by offloading the model to CPU. Remove this if you have enough GPU power
|
|
|
|
prompt = "A cat holding a sign that says hello world"
|
|
seed = 42
|
|
image = pipe(
|
|
prompt,
|
|
output_type="pil",
|
|
num_inference_steps=4, #use a larger number if you are using [dev]
|
|
generator=torch.Generator("cpu").manual_seed(seed)
|
|
).images[0]
|
|
image.save("flux-schnell.png")
|
|
```
|
|
|
|
To learn more check out the [diffusers](https://huggingface.co/docs/diffusers/main/en/api/pipelines/flux) documentation
|
|
|