Spaces:
Paused
Paused
File size: 9,588 Bytes
2f1544d 7980ef4 97fcb64 f98fb68 e60235b f98fb68 e60235b 97fcb64 7980ef4 f98fb68 9123d56 7980ef4 783af34 7980ef4 97fcb64 ff9a7fc e60235b 9123d56 e60235b 7980ef4 e60235b f98fb68 7980ef4 f98fb68 7980ef4 f98fb68 e60235b f98fb68 7980ef4 f98fb68 e60235b f98fb68 97fcb64 783af34 97fcb64 969e123 97fcb64 7980ef4 f98fb68 97fcb64 969e123 55af4cc 97fcb64 7980ef4 97fcb64 e60235b f98fb68 55af4cc f98fb68 7980ef4 97fcb64 969e123 f1d9de3 f98fb68 e60235b 969e123 f98fb68 97fcb64 f98fb68 f1d9de3 7980ef4 55af4cc 969e123 55af4cc 969e123 55af4cc 969e123 55af4cc f98fb68 97fcb64 e60235b 55af4cc e60235b 55af4cc e60235b 97fcb64 e60235b f98fb68 e60235b f98fb68 e60235b f98fb68 55af4cc f1d9de3 7980ef4 97fcb64 e60235b f98fb68 55af4cc f98fb68 e60235b 44a0b65 e60235b 55af4cc e60235b f98fb68 97fcb64 e60235b f98fb68 e60235b 44a0b65 55af4cc f98fb68 969e123 f98fb68 97fcb64 55af4cc 97fcb64 44a0b65 97fcb64 44a0b65 55af4cc f1d9de3 55af4cc 97fcb64 e60235b 97fcb64 f98fb68 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 |
# https://huggingface.co/docs/hub/en/spaces-github-actions
import os
import time
import pandas as pd
import streamlit as st
from opendashboards.assets import io, inspect, metric, plot
# prompt-based completion score stats
# instrospect specific RUN-UID-COMPLETION
# cache individual file loads
# Hotkey
# TODO: limit the historical lookup to something reasonable (e.g. 30 days)
# TODO: Add sidebar for filters such as tags, hotkeys, etc.
# TODO: Show trends for runs (versions, hotkeys, etc.). An area chart would be nice, a gantt chart would be better
# TODO: Add a search bar for runs
# TODO: Find a reason to make a pie chart (task distribution, maybe)
# TODO: remove repetition plots (it's not really a thing any more)
# TODO: MINER SKILLSET STAR CHART
# TODO: Status codes for runs vs time (from analysis notebook)
WANDB_PROJECT = "opentensor-dev/alpha-validators"
PROJECT_URL = f'https://wandb.ai/{WANDB_PROJECT}/table?workspace=default'
MAX_RECENT_RUNS = 300
DEFAULT_FILTERS = {}#{"tags": {"$in": [f'1.1.{i}' for i in range(10)]}}
DEFAULT_SELECTED_HOTKEYS = None
DEFAULT_TASK = 'qa'
DEFAULT_COMPLETION_NTOP = 10
DEFAULT_UID_NTOP = 10
# Set app config
st.set_page_config(
page_title='Validator Dashboard',
menu_items={
'Report a bug': "https://github.com/opentensor/dashboards/issues",
'About': f"""
This dashboard is part of the OpenTensor project. \n
To see runs in wandb, go to: \n
[Wandb Table](https://wandb.ai/{WANDB_PROJECT}/table?workspace=default) \n
"""
},
layout = "centered"
)
st.title('Validator :red[Analysis] Dashboard :eyes:')
# add vertical space
st.markdown('#')
st.markdown('#')
with st.spinner(text=f'Checking wandb...'):
df_runs = io.load_runs(project=WANDB_PROJECT, filters=DEFAULT_FILTERS, min_steps=10, max_recent=MAX_RECENT_RUNS)
metric.wandb(df_runs)
# add vertical space
st.markdown('#')
st.markdown('#')
tab1, tab2, tab3, tab4 = st.tabs(["Run Data", "UID Health", "Completions", "Prompt-based scoring"])
### Wandb Runs ###
with tab1:
st.markdown('#')
st.subheader(":violet[Run] Data")
# make multiselect for run_ids with label on same line
run_ids = st.multiselect('Select one or more weights and biases run by id:', df_runs['run_id'], key='run_id', default=df_runs['run_id'][:3], help=f'Select one or more runs to analyze. You can find the raw data for these runs [here]({PROJECT_URL}).')
n_runs = len(run_ids)
df_runs_subset = df_runs[df_runs['run_id'].isin(run_ids)]
with st.expander(f'Select from :violet[all] wandb runs'):
edited_df = st.data_editor(
df_runs.assign(Select=False).set_index('Select'),
column_config={"Select": st.column_config.CheckboxColumn(required=True)},
disabled=df_runs.columns,
use_container_width=True,
)
if edited_df.index.any():
df_runs_subset = df_runs[edited_df.index==True]
n_runs = len(df_runs_subset)
if n_runs:
df = io.load_data(df_runs_subset, load=True, save=True)
df = inspect.clean_data(df)
print(f'\nNans in columns: {df.isna().sum()}')
df_long = inspect.explode_data(df)
if 'rewards' in df_long:
df_long['rewards'] = df_long['rewards'].astype(float)
else:
st.info(f'You must select at least one run to load data')
st.stop()
metric.runs(df_long)
timeline_color = st.radio('Color by:', ['state', 'version', 'netuid'], key='timeline_color', horizontal=True)
plot.timeline(df_runs, color=timeline_color)
st.markdown('#')
st.subheader(":violet[Event] Data")
with st.expander(f'Show :violet[raw] event data for **{n_runs} selected runs**'):
raw_data_col1, raw_data_col2 = st.columns(2)
use_long_checkbox = raw_data_col1.checkbox('Use long format', value=True)
num_rows = raw_data_col2.slider('Number of rows:', min_value=1, max_value=100, value=10, key='num_rows')
st.dataframe(df_long.head(num_rows) if use_long_checkbox else df.head(num_rows),
use_container_width=True)
# step_types = ['all']+['augment','followup','answer']#list(df.name.unique())
step_types = ['all']+list(df.task.unique())
### UID Health ###
# TODO: Live time - time elapsed since moving_averaged_score for selected UID was 0 (lower bound so use >Time)
# TODO: Weight - Most recent weight for selected UID (Add warning if weight is 0 or most recent timestamp is not current)
with tab2:
st.markdown('#')
st.subheader("UID :violet[Health]")
st.info(f"Showing UID health metrics for **{n_runs} selected runs**")
uid_src = st.radio('Select task type:', step_types, horizontal=True, key='uid_src')
df_uid = df_long[df_long.task.str.contains(uid_src)] if uid_src != 'all' else df_long
metric.uids(df_uid, uid_src)
uids = st.multiselect('UID:', sorted(df_uid['uids'].unique()), key='uid')
with st.expander(f'Show UID health data for **{n_runs} selected runs** and **{len(uids)} selected UIDs**'):
st.markdown('#')
st.subheader(f"UID {uid_src.title()} :violet[Health]")
agg_uid_checkbox = st.checkbox('Aggregate UIDs', value=True)
if agg_uid_checkbox:
metric.uids(df_uid, uid_src, uids)
else:
for uid in uids:
st.caption(f'UID: {uid}')
metric.uids(df_uid, uid_src, [uid])
st.subheader(f'Cumulative completion frequency')
freq_col1, freq_col2 = st.columns(2)
freq_ntop = freq_col1.slider('Number of Completions:', min_value=10, max_value=1000, value=100, key='freq_ntop')
freq_rm_empty = freq_col2.checkbox('Remove empty (failed)', value=True, key='freq_rm_empty')
freq_cumulative = freq_col2.checkbox('Cumulative', value=False, key='freq_cumulative')
freq_normalize = freq_col2.checkbox('Normalize', value=True, key='freq_normalize')
plot.uid_completion_counts(df_uid, uids=uids, src=uid_src, ntop=freq_ntop, rm_empty=freq_rm_empty, cumulative=freq_cumulative, normalize=freq_normalize)
with st.expander(f'Show UID **{uid_src}** leaderboard data for **{n_runs} selected runs**'):
st.markdown('#')
st.subheader(f"UID {uid_src.title()} :violet[Leaderboard]")
uid_col1, uid_col2 = st.columns(2)
uid_ntop = uid_col1.slider('Number of UIDs:', min_value=1, max_value=50, value=DEFAULT_UID_NTOP, key='uid_ntop')
uid_agg = uid_col2.selectbox('Aggregation:', ('mean','min','max','size','nunique'), key='uid_agg')
plot.leaderboard(
df_uid,
ntop=uid_ntop,
group_on='uids',
agg_col='rewards',
agg=uid_agg
)
with st.expander(f'Show UID **{uid_src}** diversity data for **{n_runs} selected runs**'):
st.markdown('#')
st.subheader(f"UID {uid_src.title()} :violet[Diversity]")
rm_failed = st.checkbox(f'Remove failed **{uid_src}** completions', value=True)
plot.uid_diversty(df, rm_failed)
### Completions ###
with tab3:
st.markdown('#')
st.subheader('Completion :violet[Leaderboard]')
completion_info = st.empty()
msg_col1, msg_col2 = st.columns(2)
# completion_src = msg_col1.radio('Select one:', ['followup', 'answer'], horizontal=True, key='completion_src')
completion_src = st.radio('Select task type:', step_types, horizontal=True, key='completion_src')
df_comp = df_long[df_long.task.str.contains(completion_src)] if completion_src != 'all' else df_long
completion_info.info(f"Showing **{completion_src}** completions for **{n_runs} selected runs**")
completion_ntop = msg_col2.slider('Top k:', min_value=1, max_value=50, value=DEFAULT_COMPLETION_NTOP, key='completion_ntop')
completions = inspect.completions(df_long, 'completions')
# Get completions with highest average rewards
plot.leaderboard(
df_comp,
ntop=completion_ntop,
group_on='completions',
agg_col='rewards',
agg='mean',
alias=True
)
with st.expander(f'Show **{completion_src}** completion rewards data for **{n_runs} selected runs**'):
st.markdown('#')
st.subheader('Completion :violet[Rewards]')
completion_select = st.multiselect('Completions:', completions.index, default=completions.index[:3].tolist())
# completion_regex = st.text_input('Completion regex:', value='', key='completion_regex')
plot.completion_rewards(
df_comp,
completion_col='completions',
reward_col='rewards',
uid_col='uids',
ntop=completion_ntop,
completions=completion_select,
)
# TODO: show the UIDs which have used the selected completions
with st.expander(f'Show **{completion_src}** completion length data for **{n_runs} selected runs**'):
st.markdown('#')
st.subheader('Completion :violet[Length]')
completion_length_radio = st.radio('Use: ', ['characters','words','sentences'], key='completion_length_radio')
# Todo: use color to identify selected completions/ step names/ uids
plot.completion_length_time(
df_comp,
completion_col='completions',
uid_col='uids',
time_col='timings',
length_opt=completion_length_radio,
)
### Prompt-based scoring ###
with tab4:
# coming soon
st.info('Prompt-based scoring coming soon')
st.snow()
# st.dataframe(df_long_long.filter(regex=prompt_src).head())
|