Spaces:
Runtime error
Runtime error
import torch | |
import torch.nn as nn | |
from torch.nn import functional as F | |
import torch.optim as optim | |
from torch.optim import lr_scheduler | |
import torch.backends.cudnn as cudnn | |
import numpy as np | |
import torchvision | |
from torchvision import datasets, models, transforms | |
import matplotlib.pyplot as plt | |
import time | |
import os | |
from PIL import Image | |
from tempfile import TemporaryDirectory | |
import streamlit as st | |
cudnn.benchmark = True | |
plt.ion() # interactive mode | |
class classifier(): | |
def __init__(self): | |
self.data_transforms = None | |
self.data_dir = None | |
self.image_datasets = None | |
self.dataloaders = None | |
self.dataset_sizes = None | |
self.class_names = None | |
self.device = None | |
self.num_classes = None | |
def data_loader(self,path,batch_size=4): | |
# Data augmentation and normalization for training | |
# Just normalization for validation | |
self.data_transforms = { | |
'train': transforms.Compose([ | |
transforms.RandomResizedCrop(224), | |
transforms.RandomHorizontalFlip(), | |
transforms.ToTensor(), | |
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) | |
]), | |
'val': transforms.Compose([ | |
transforms.Resize(256), | |
transforms.CenterCrop(224), | |
transforms.ToTensor(), | |
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) | |
]), | |
'test': transforms.Compose([ | |
transforms.Resize(256), | |
transforms.CenterCrop(224), | |
transforms.ToTensor(), | |
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) | |
]) | |
} | |
self.data_dir = path | |
self.image_datasets = {x: datasets.ImageFolder(os.path.join(self.data_dir, x), | |
self.data_transforms[x]) | |
for x in ['train', 'val','test']} | |
self.dataloaders = {x: torch.utils.data.DataLoader(self.image_datasets[x], batch_size=batch_size, | |
shuffle=True, num_workers=4) | |
for x in ['train', 'val','test']} | |
self.dataset_sizes = {x: len(self.image_datasets[x]) for x in ['train', 'val','test']} | |
self.class_names = self.image_datasets['train'].classes | |
self.num_classes = len(self.class_names) | |
self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
def train(self,model, criterion, optimizer, scheduler, num_epochs=25): | |
since = time.time() | |
# Create a temporary directory to save training checkpoints | |
with TemporaryDirectory() as tempdir: | |
best_model_params_path = os.path.join(tempdir, 'best_model_params.pt') | |
torch.save(model.state_dict(), best_model_params_path) | |
best_acc = 0.0 | |
for epoch in range(num_epochs): | |
print(f'Epoch {epoch+1}/{num_epochs}') | |
print('-' * 10) | |
st.sidebar.subheader(f':blue[Epoch {epoch+1}/{num_epochs}]', divider='blue') | |
# st.sidebar.code('-' * 10) | |
# Each epoch has a training and validation phase | |
for phase in ['train', 'val']: | |
if phase == 'train': | |
model.train() # Set model to training mode | |
else: | |
model.eval() # Set model to evaluate mode | |
running_loss = 0.0 | |
running_corrects = 0 | |
# Iterate over data. | |
for inputs, labels in self.dataloaders[phase]: | |
inputs = inputs.to(self.device) | |
labels = labels.to(self.device) | |
# zero the parameter gradients | |
optimizer.zero_grad() | |
# forward | |
# track history if only in train | |
with torch.set_grad_enabled(phase == 'train'): | |
outputs = model(inputs) | |
_, preds = torch.max(outputs, 1) | |
loss = criterion(outputs, labels) | |
# backward + optimize only if in training phase | |
if phase == 'train': | |
loss.backward() | |
optimizer.step() | |
# statistics | |
running_loss += loss.item() * inputs.size(0) | |
running_corrects += torch.sum(preds == labels.data) | |
if phase == 'train': | |
scheduler.step() | |
epoch_loss = running_loss / self.dataset_sizes[phase] | |
epoch_acc = running_corrects.double() / self.dataset_sizes[phase] | |
print(f'{phase} Loss: {epoch_loss:.4f} Acc: {epoch_acc:.4f}') | |
st.sidebar.caption(f':blue[{phase[0].upper() + phase[1:]} Loss:] {epoch_loss:.4f} :blue[ Accuracy:] {epoch_acc:.4f}') | |
# deep copy the model | |
if phase == 'val' and epoch_acc > best_acc: | |
best_acc = epoch_acc | |
torch.save(model.state_dict(), best_model_params_path) | |
print() | |
time_elapsed = time.time() - since | |
print(f'Training complete in {time_elapsed // 60:.0f}m {time_elapsed % 60:.0f}s') | |
print(f'Best val Accuracy: {best_acc:4f}') | |
st.sidebar.caption(f':green[Training complete in] {time_elapsed // 60:.0f}m {time_elapsed % 60:.0f}s') | |
st.sidebar.subheader(f':blue[Best val Accuracy:] {best_acc:4f}') | |
# load best model weights | |
model.load_state_dict(torch.load(best_model_params_path)) | |
return model | |
def train_model(self,model_name,epochs): | |
num_classes = self.num_classes | |
if model_name == 'EfficientNet_B0': | |
model = models.efficientnet_b0(pretrained=True) | |
model.classifier[1] = nn.Linear(model.classifier[1].in_features, num_classes) | |
# model.classifier[1].out_features = num_classes | |
optimizer = torch.optim.SGD(model.classifier[1].parameters(), lr=0.001, momentum=0.9) | |
elif model_name == 'EfficientNet_B1': | |
model = models.efficientnet_b1(pretrained=True) | |
model.classifier[1] = nn.Linear(model.classifier[1].in_features, num_classes) | |
# model.classifier[1].out_features = num_classes | |
optimizer = torch.optim.SGD(model.classifier[1].parameters(), lr=0.001, momentum=0.9) | |
elif model_name == 'MnasNet0_5': | |
model = models.mnasnet0_5(pretrained=True) | |
model.classifier[1] = nn.Linear(model.classifier[1].in_features, num_classes) | |
# model.classifier[1].out_features = num_classes | |
optimizer = torch.optim.SGD(model.classifier[1].parameters(), lr=0.001, momentum=0.9) | |
elif model_name == 'MnasNet0_75': | |
model = models.mnasnet0_75(pretrained=True) | |
model.classifier[1] = nn.Linear(model.classifier[1].in_features, num_classes) | |
# model.classifier[1].out_features = num_classes | |
optimizer = torch.optim.SGD(model.classifier[1].parameters(), lr=0.001, momentum=0.9) | |
elif model_name == 'MnasNet1_0': | |
model = models.mnasnet1_0(pretrained=True) | |
model.classifier[1] = nn.Linear(model.classifier[1].in_features, num_classes) | |
# model.classifier[1].out_features = num_classes | |
optimizer = torch.optim.SGD(model.classifier[1].parameters(), lr=0.001, momentum=0.9) | |
elif model_name == 'MobileNet_v2': | |
model = models.mobilenet_v2(pretrained=True) | |
model.classifier[1] = nn.Linear(model.classifier[1].in_features, num_classes) | |
# model.classifier[1].out_features = num_classes | |
optimizer = torch.optim.SGD(model.classifier[1].parameters(), lr=0.001, momentum=0.9) | |
elif model_name == 'MobileNet_v3_small': | |
model = models.mobilenet_v3_small(pretrained=True) | |
model.classifier[3] = nn.Linear(model.classifier[3].in_features, num_classes) | |
# model.classifier[3].out_features = num_classes | |
optimizer = torch.optim.SGD(model.classifier[3].parameters(), lr=0.001, momentum=0.9) | |
elif model_name == 'MobileNet_v3_large': | |
model = models.mobilenet_v3_large(pretrained=True) | |
model.classifier[3] = nn.Linear(model.classifier[3].in_features, num_classes) | |
# model.classifier[3].out_features = num_classes | |
optimizer = torch.optim.SGD(model.classifier[3].parameters(), lr=0.001, momentum=0.9) | |
elif model_name == 'RegNet_y_400mf': | |
model = models.regnet_y_400mf(pretrained=True) | |
model.fc = nn.Linear(model.fc.in_features, num_classes) | |
# model.fc.out_features = num_classes | |
optimizer = torch.optim.SGD(model.fc.parameters(), lr=0.001, momentum=0.9) | |
elif model_name == 'ShuffleNet_v2_x0_5': | |
model = models.shufflenet_v2_x0_5(pretrained=True) | |
model.fc = nn.Linear(model.fc.in_features, num_classes) | |
# model.fc.out_features = num_classes | |
optimizer = torch.optim.SGD(model.fc.parameters(), lr=0.001, momentum=0.9) | |
elif model_name == 'ShuffleNet_v2_x1_0': | |
model = models.shufflenet_v2_x1_0(pretrained=True) | |
model.fc = nn.Linear(model.fc.in_features, num_classes) | |
# model.fc.out_features = num_classes | |
optimizer = torch.optim.SGD(model.fc.parameters(), lr=0.001, momentum=0.9) | |
elif model_name == 'ShuffleNet_v2_x1_5': | |
model = models.shufflenet_v2_x1_5(pretrained=True) | |
model.fc = nn.Linear(model.fc.in_features, num_classes) | |
# model.fc.out_features = num_classes | |
optimizer = torch.optim.SGD(model.fc.parameters(), lr=0.001, momentum=0.9) | |
elif model_name == 'SqueezeNet 1_0': | |
model = models.squeezenet1_0(pretrained=True) | |
model.classifier[1] = nn.Conv2d(model.classifier[1].in_channels, num_classes,model.classifier[1].kernel_size, model.classifier[1].stride) | |
# model.classifier[1].out_channels = num_classes | |
optimizer = torch.optim.SGD(model.classifier[1].parameters(), lr=0.001, momentum=0.9) | |
elif model_name == 'SqueezeNet 1_1': | |
model = models.squeezenet1_1(pretrained=True) | |
model.classifier[1] = nn.Conv2d(model.classifier[1].in_channels, num_classes,model.classifier[1].kernel_size, model.classifier[1].stride) | |
# model.classifier[1].out_channels = num_classes | |
optimizer = torch.optim.SGD(model.classifier[1].parameters(), lr=0.001, momentum=0.9) | |
exp_lr_scheduler = lr_scheduler.StepLR(optimizer, step_size=7, gamma=0.1) | |
criterion = nn.CrossEntropyLoss() | |
model_ft = self.train(model, criterion, optimizer, exp_lr_scheduler, | |
num_epochs=epochs) | |
torch.save(model.state_dict(), 'model.pt') | |
return model_ft | |
def imshow(self,inp, title=None): | |
"""Display image for Tensor.""" | |
inp = inp.numpy().transpose((1, 2, 0)) | |
mean = np.array([0.485, 0.456, 0.406]) | |
std = np.array([0.229, 0.224, 0.225]) | |
inp = std * inp + mean | |
inp = np.clip(inp, 0, 1) | |
plt.imshow(inp) | |
if title is not None: | |
plt.title(title) | |
plt.pause(0.001) | |
def visualize_model(self,model, num_images=6): | |
was_training = model.training | |
model.eval() | |
images_so_far = 0 | |
fig = plt.figure() | |
with torch.no_grad(): | |
for i, (inputs, labels) in enumerate(self.dataloaders['val']): | |
inputs = inputs.to(self.device) | |
labels = labels.to(self.device) | |
outputs = model(inputs) | |
_, preds = torch.max(outputs, 1) | |
for j in range(inputs.size()[0]): | |
images_so_far += 1 | |
ax = plt.subplot(num_images//2, 2, images_so_far) | |
ax.axis('off') | |
ax.set_title(f'predicted: {self.class_names[preds[j]]}') | |
self.imshow(inputs.cpu().data[j]) | |
if images_so_far == num_images: | |
model.train(mode=was_training) | |
return | |
model.train(mode=was_training) | |
def pytorch_predict(self,model): | |
''' | |
Make prediction from a pytorch model | |
''' | |
# set model to evaluate model | |
model.eval() | |
y_true = torch.tensor([], dtype=torch.long, device=self.device) | |
all_outputs = torch.tensor([], device=self.device) | |
# deactivate autograd engine and reduce memory usage and speed up computations | |
with torch.no_grad(): | |
for data in self.dataloaders['test']: | |
inputs = [i.to(self.device) for i in data[:-1]] | |
labels = data[-1].to(self.device) | |
outputs = model(*inputs) | |
y_true = torch.cat((y_true, labels), 0) | |
all_outputs = torch.cat((all_outputs, outputs), 0) | |
y_true = y_true.cpu().numpy() | |
_, y_pred = torch.max(all_outputs, 1) | |
y_pred = y_pred.cpu().numpy() | |
y_pred_prob = F.softmax(all_outputs, dim=1).cpu().numpy() | |
return y_true, y_pred, y_pred_prob | |