Spaces:
Runtime error
Runtime error
# Copyright (c) Microsoft Corporation. | |
# Licensed under the MIT License. | |
import sys | |
import argparse | |
import os | |
from util import util | |
import torch | |
import models | |
import data | |
import pickle | |
class BaseOptions: | |
def __init__(self): | |
self.initialized = False | |
def initialize(self, parser): | |
# experiment specifics | |
parser.add_argument( | |
"--name", | |
type=str, | |
default="label2coco", | |
help="name of the experiment. It decides where to store samples and models", | |
) | |
parser.add_argument( | |
"--gpu_ids", type=str, default="0", help="gpu ids: e.g. 0 0,1,2, 0,2. use -1 for CPU" | |
) | |
parser.add_argument( | |
"--checkpoints_dir", type=str, default="./checkpoints", help="models are saved here" | |
) | |
parser.add_argument("--model", type=str, default="pix2pix", help="which model to use") | |
parser.add_argument( | |
"--norm_G", | |
type=str, | |
default="spectralinstance", | |
help="instance normalization or batch normalization", | |
) | |
parser.add_argument( | |
"--norm_D", | |
type=str, | |
default="spectralinstance", | |
help="instance normalization or batch normalization", | |
) | |
parser.add_argument( | |
"--norm_E", | |
type=str, | |
default="spectralinstance", | |
help="instance normalization or batch normalization", | |
) | |
parser.add_argument("--phase", type=str, default="train", help="train, val, test, etc") | |
# input/output sizes | |
parser.add_argument("--batchSize", type=int, default=1, help="input batch size") | |
parser.add_argument( | |
"--preprocess_mode", | |
type=str, | |
default="scale_width_and_crop", | |
help="scaling and cropping of images at load time.", | |
choices=( | |
"resize_and_crop", | |
"crop", | |
"scale_width", | |
"scale_width_and_crop", | |
"scale_shortside", | |
"scale_shortside_and_crop", | |
"fixed", | |
"none", | |
"resize", | |
), | |
) | |
parser.add_argument( | |
"--load_size", | |
type=int, | |
default=1024, | |
help="Scale images to this size. The final image will be cropped to --crop_size.", | |
) | |
parser.add_argument( | |
"--crop_size", | |
type=int, | |
default=512, | |
help="Crop to the width of crop_size (after initially scaling the images to load_size.)", | |
) | |
parser.add_argument( | |
"--aspect_ratio", | |
type=float, | |
default=1.0, | |
help="The ratio width/height. The final height of the load image will be crop_size/aspect_ratio", | |
) | |
parser.add_argument( | |
"--label_nc", | |
type=int, | |
default=182, | |
help="# of input label classes without unknown class. If you have unknown class as class label, specify --contain_dopntcare_label.", | |
) | |
parser.add_argument( | |
"--contain_dontcare_label", | |
action="store_true", | |
help="if the label map contains dontcare label (dontcare=255)", | |
) | |
parser.add_argument("--output_nc", type=int, default=3, help="# of output image channels") | |
# for setting inputs | |
parser.add_argument("--dataroot", type=str, default="./datasets/cityscapes/") | |
parser.add_argument("--dataset_mode", type=str, default="coco") | |
parser.add_argument( | |
"--serial_batches", | |
action="store_true", | |
help="if true, takes images in order to make batches, otherwise takes them randomly", | |
) | |
parser.add_argument( | |
"--no_flip", | |
action="store_true", | |
help="if specified, do not flip the images for data argumentation", | |
) | |
parser.add_argument("--nThreads", default=0, type=int, help="# threads for loading data") | |
parser.add_argument( | |
"--max_dataset_size", | |
type=int, | |
default=sys.maxsize, | |
help="Maximum number of samples allowed per dataset. If the dataset directory contains more than max_dataset_size, only a subset is loaded.", | |
) | |
parser.add_argument( | |
"--load_from_opt_file", | |
action="store_true", | |
help="load the options from checkpoints and use that as default", | |
) | |
parser.add_argument( | |
"--cache_filelist_write", | |
action="store_true", | |
help="saves the current filelist into a text file, so that it loads faster", | |
) | |
parser.add_argument( | |
"--cache_filelist_read", action="store_true", help="reads from the file list cache" | |
) | |
# for displays | |
parser.add_argument("--display_winsize", type=int, default=400, help="display window size") | |
# for generator | |
parser.add_argument( | |
"--netG", type=str, default="spade", help="selects model to use for netG (pix2pixhd | spade)" | |
) | |
parser.add_argument("--ngf", type=int, default=64, help="# of gen filters in first conv layer") | |
parser.add_argument( | |
"--init_type", | |
type=str, | |
default="xavier", | |
help="network initialization [normal|xavier|kaiming|orthogonal]", | |
) | |
parser.add_argument( | |
"--init_variance", type=float, default=0.02, help="variance of the initialization distribution" | |
) | |
parser.add_argument("--z_dim", type=int, default=256, help="dimension of the latent z vector") | |
parser.add_argument( | |
"--no_parsing_map", action="store_true", help="During training, we do not use the parsing map" | |
) | |
# for instance-wise features | |
parser.add_argument( | |
"--no_instance", action="store_true", help="if specified, do *not* add instance map as input" | |
) | |
parser.add_argument( | |
"--nef", type=int, default=16, help="# of encoder filters in the first conv layer" | |
) | |
parser.add_argument("--use_vae", action="store_true", help="enable training with an image encoder.") | |
parser.add_argument( | |
"--tensorboard_log", action="store_true", help="use tensorboard to record the resutls" | |
) | |
# parser.add_argument('--img_dir',) | |
parser.add_argument( | |
"--old_face_folder", type=str, default="", help="The folder name of input old face" | |
) | |
parser.add_argument( | |
"--old_face_label_folder", type=str, default="", help="The folder name of input old face label" | |
) | |
parser.add_argument("--injection_layer", type=str, default="all", help="") | |
self.initialized = True | |
return parser | |
def gather_options(self): | |
# initialize parser with basic options | |
if not self.initialized: | |
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) | |
parser = self.initialize(parser) | |
# get the basic options | |
opt, unknown = parser.parse_known_args() | |
# modify model-related parser options | |
model_name = opt.model | |
model_option_setter = models.get_option_setter(model_name) | |
parser = model_option_setter(parser, self.isTrain) | |
# modify dataset-related parser options | |
# dataset_mode = opt.dataset_mode | |
# dataset_option_setter = data.get_option_setter(dataset_mode) | |
# parser = dataset_option_setter(parser, self.isTrain) | |
opt, unknown = parser.parse_known_args() | |
# if there is opt_file, load it. | |
# The previous default options will be overwritten | |
if opt.load_from_opt_file: | |
parser = self.update_options_from_file(parser, opt) | |
opt = parser.parse_args() | |
self.parser = parser | |
return opt | |
def print_options(self, opt): | |
message = "" | |
message += "----------------- Options ---------------\n" | |
for k, v in sorted(vars(opt).items()): | |
comment = "" | |
default = self.parser.get_default(k) | |
if v != default: | |
comment = "\t[default: %s]" % str(default) | |
message += "{:>25}: {:<30}{}\n".format(str(k), str(v), comment) | |
message += "----------------- End -------------------" | |
# print(message) | |
def option_file_path(self, opt, makedir=False): | |
expr_dir = os.path.join(opt.checkpoints_dir, opt.name) | |
if makedir: | |
util.mkdirs(expr_dir) | |
file_name = os.path.join(expr_dir, "opt") | |
return file_name | |
def save_options(self, opt): | |
file_name = self.option_file_path(opt, makedir=True) | |
with open(file_name + ".txt", "wt") as opt_file: | |
for k, v in sorted(vars(opt).items()): | |
comment = "" | |
default = self.parser.get_default(k) | |
if v != default: | |
comment = "\t[default: %s]" % str(default) | |
opt_file.write("{:>25}: {:<30}{}\n".format(str(k), str(v), comment)) | |
with open(file_name + ".pkl", "wb") as opt_file: | |
pickle.dump(opt, opt_file) | |
def update_options_from_file(self, parser, opt): | |
new_opt = self.load_options(opt) | |
for k, v in sorted(vars(opt).items()): | |
if hasattr(new_opt, k) and v != getattr(new_opt, k): | |
new_val = getattr(new_opt, k) | |
parser.set_defaults(**{k: new_val}) | |
return parser | |
def load_options(self, opt): | |
file_name = self.option_file_path(opt, makedir=False) | |
new_opt = pickle.load(open(file_name + ".pkl", "rb")) | |
return new_opt | |
def parse(self, save=False): | |
opt = self.gather_options() | |
opt.isTrain = self.isTrain # train or test | |
opt.contain_dontcare_label = False | |
self.print_options(opt) | |
if opt.isTrain: | |
self.save_options(opt) | |
# Set semantic_nc based on the option. | |
# This will be convenient in many places | |
opt.semantic_nc = ( | |
opt.label_nc + (1 if opt.contain_dontcare_label else 0) + (0 if opt.no_instance else 1) | |
) | |
# set gpu ids | |
str_ids = opt.gpu_ids.split(",") | |
opt.gpu_ids = [] | |
for str_id in str_ids: | |
int_id = int(str_id) | |
if int_id >= 0: | |
opt.gpu_ids.append(int_id) | |
if len(opt.gpu_ids) > 0: | |
print("The main GPU is ") | |
print(opt.gpu_ids[0]) | |
torch.cuda.set_device(opt.gpu_ids[0]) | |
assert ( | |
len(opt.gpu_ids) == 0 or opt.batchSize % len(opt.gpu_ids) == 0 | |
), "Batch size %d is wrong. It must be a multiple of # GPUs %d." % (opt.batchSize, len(opt.gpu_ids)) | |
self.opt = opt | |
return self.opt | |