File size: 3,353 Bytes
d30c02a
5eddda9
96d766a
 
26b862a
85b8a02
d30c02a
26b862a
 
5eddda9
 
26b862a
96d766a
a2f8954
 
 
 
 
 
26b862a
 
 
96d766a
26b862a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d30c02a
 
 
 
 
 
96d766a
26b862a
 
 
 
 
 
 
 
 
 
 
85b8a02
 
26b862a
 
 
 
 
 
 
 
 
85b8a02
26b862a
 
d30c02a
26b862a
 
 
d30c02a
 
96d766a
d30c02a
96d766a
 
 
d30c02a
 
85b8a02
 
 
d30c02a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96d766a
 
 
 
 
d30c02a
96d766a
 
d30c02a
85b8a02
96d766a
 
 
d30c02a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
import os
import spaces  # Move this to the top
import gradio as gr
from huggingface_hub import InferenceClient
from langchain.embeddings import HuggingFaceInstructEmbeddings
from langchain.vectorstores import Chroma
from langchain.prompts import PromptTemplate
from langchain.chains import RetrievalQA
from langchain.llms import HuggingFacePipeline

import torch
from transformers import AutoTokenizer, TextStreamer, pipeline, BitsAndBytesConfig, AutoModelForCausalLM

TORCH_VERSION = torch.__version__
SUPPORTED_TORCH_VERSIONS = ['2.0.1', '2.1.2', '2.2.2', '2.4.0']
if TORCH_VERSION.rsplit('+')[0] not in SUPPORTED_TORCH_VERSIONS:
    print(f"Warning: Current PyTorch version {TORCH_VERSION} may not be compatible with ZeroGPU. "
          f"Supported versions are: {', '.join(SUPPORTED_TORCH_VERSIONS)}")

# Model initialization
model_id = "meta-llama/Llama-3.2-3B-Instruct"
token = os.environ.get("HF_TOKEN")

bnb_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_use_double_quant=True,
    bnb_4bit_quant_type="nf4",
    bnb_4bit_compute_dtype=torch.bfloat16
)

tokenizer = AutoTokenizer.from_pretrained(model_id, token=token)
model = AutoModelForCausalLM.from_pretrained(
    model_id,
    token=token,
    quantization_config=bnb_config
)

# Initialize InstructEmbeddings
embeddings = HuggingFaceInstructEmbeddings(
    model_name="hkunlp/instructor-base",
    model_kwargs={"device": "cpu"}
)

db = Chroma(
    persist_directory="db",
    embedding_function=embeddings
)

# Setup pipeline
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
text_pipeline = pipeline(
    "text-generation",
    model=model,
    tokenizer=tokenizer,
    max_new_tokens=500,
    temperature=0.1,
    top_p=0.95,
    repetition_penalty=1.15,
    streamer=streamer,
)

# Create LLM chain
llm = HuggingFacePipeline(pipeline=text_pipeline)
qa_chain = RetrievalQA.from_chain_type(
    llm=llm,
    chain_type="stuff",
    retriever=db.as_retriever(search_kwargs={"k": 2}),
    return_source_documents=False,
    chain_type_kwargs={"prompt": prompt_template}
)

@spaces.GPU(duration=30)
def respond(message, history, system_message, max_tokens, temperature, top_p):
    try:
        # Use the QA chain directly
        response = qa_chain.invoke({"query": message})
        yield response["result"]
    except Exception as e:
        yield f"An error occurred: {str(e)}"

# Create Gradio interface
demo = gr.ChatInterface(
    respond,
    additional_inputs=[
        gr.Textbox(
            value=DEFAULT_SYSTEM_PROMPT,
            label="System Message",
            lines=3,
            visible=False
        ),
        gr.Slider(
            minimum=1,
            maximum=2048,
            value=500,
            step=1,
            label="Max new tokens"
        ),
        gr.Slider(
            minimum=0.1,
            maximum=4.0,
            value=0.1,
            step=0.1,
            label="Temperature"
        ),
        gr.Slider(
            minimum=0.1,
            maximum=1.0,
            value=0.95,
            step=0.05,
            label="Top-p (nucleus sampling)"
        ),
    ],
    title="ROS2 Expert Assistant",
    description="Ask questions about ROS2, navigation, and robotics. I'll provide concise answers based on the available documentation.",
)

if __name__ == "__main__":
    demo.launch()