File size: 2,989 Bytes
d30c02a
 
96d766a
d30c02a
96d766a
26b862a
85b8a02
d30c02a
26b862a
 
 
96d766a
26b862a
 
 
96d766a
26b862a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d30c02a
 
 
 
 
 
96d766a
26b862a
 
 
 
 
 
 
 
 
 
 
85b8a02
 
26b862a
 
 
 
 
 
 
 
 
85b8a02
26b862a
 
d30c02a
26b862a
 
 
d30c02a
 
96d766a
d30c02a
96d766a
 
 
d30c02a
 
85b8a02
 
 
d30c02a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96d766a
 
 
 
 
d30c02a
96d766a
 
d30c02a
85b8a02
96d766a
 
 
d30c02a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
import os
import torch
import gradio as gr
import spaces
from huggingface_hub import InferenceClient
from langchain.embeddings import HuggingFaceInstructEmbeddings
from langchain.vectorstores import Chroma
from langchain.prompts import PromptTemplate
from langchain.chains import RetrievalQA
from langchain.llms import HuggingFacePipeline
from transformers import AutoTokenizer, TextStreamer, pipeline, BitsAndBytesConfig, AutoModelForCausalLM

# Model initialization
model_id = "meta-llama/Llama-3.2-3B-Instruct"
token = os.environ.get("HF_TOKEN")

bnb_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_use_double_quant=True,
    bnb_4bit_quant_type="nf4",
    bnb_4bit_compute_dtype=torch.bfloat16
)

tokenizer = AutoTokenizer.from_pretrained(model_id, token=token)
model = AutoModelForCausalLM.from_pretrained(
    model_id,
    token=token,
    quantization_config=bnb_config
)

# Initialize InstructEmbeddings
embeddings = HuggingFaceInstructEmbeddings(
    model_name="hkunlp/instructor-base",
    model_kwargs={"device": "cpu"}
)

db = Chroma(
    persist_directory="db",
    embedding_function=embeddings
)

# Setup pipeline
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
text_pipeline = pipeline(
    "text-generation",
    model=model,
    tokenizer=tokenizer,
    max_new_tokens=500,
    temperature=0.1,
    top_p=0.95,
    repetition_penalty=1.15,
    streamer=streamer,
)

# Create LLM chain
llm = HuggingFacePipeline(pipeline=text_pipeline)
qa_chain = RetrievalQA.from_chain_type(
    llm=llm,
    chain_type="stuff",
    retriever=db.as_retriever(search_kwargs={"k": 2}),
    return_source_documents=False,
    chain_type_kwargs={"prompt": prompt_template}
)

@spaces.GPU(duration=30)
def respond(message, history, system_message, max_tokens, temperature, top_p):
    try:
        # Use the QA chain directly
        response = qa_chain.invoke({"query": message})
        yield response["result"]
    except Exception as e:
        yield f"An error occurred: {str(e)}"

# Create Gradio interface
demo = gr.ChatInterface(
    respond,
    additional_inputs=[
        gr.Textbox(
            value=DEFAULT_SYSTEM_PROMPT,
            label="System Message",
            lines=3,
            visible=False
        ),
        gr.Slider(
            minimum=1,
            maximum=2048,
            value=500,
            step=1,
            label="Max new tokens"
        ),
        gr.Slider(
            minimum=0.1,
            maximum=4.0,
            value=0.1,
            step=0.1,
            label="Temperature"
        ),
        gr.Slider(
            minimum=0.1,
            maximum=1.0,
            value=0.95,
            step=0.05,
            label="Top-p (nucleus sampling)"
        ),
    ],
    title="ROS2 Expert Assistant",
    description="Ask questions about ROS2, navigation, and robotics. I'll provide concise answers based on the available documentation.",
)

if __name__ == "__main__":
    demo.launch()