File size: 3,446 Bytes
d30c02a
cbe2d25
96d766a
26b862a
85b8a02
d30c02a
26b862a
 
cbe2d25
5eddda9
cbe2d25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26b862a
cbe2d25
26b862a
 
 
d30c02a
 
 
 
 
 
96d766a
26b862a
 
d30c02a
cbe2d25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26b862a
 
cbe2d25
d30c02a
 
96d766a
d30c02a
96d766a
 
 
d30c02a
 
85b8a02
 
 
d30c02a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96d766a
 
 
 
 
d30c02a
96d766a
 
d30c02a
85b8a02
96d766a
 
 
d30c02a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import os
import spaces  # First import
import gradio as gr
from langchain.embeddings import HuggingFaceInstructEmbeddings
from langchain.vectorstores import Chroma
from langchain.prompts import PromptTemplate
from langchain.chains import RetrievalQA
from langchain.llms import HuggingFacePipeline
from huggingface_hub import InferenceClient

# GPU initialization moved into a function
def initialize_model():
    import torch
    from transformers import (
        AutoTokenizer, 
        TextStreamer, 
        pipeline, 
        BitsAndBytesConfig, 
        AutoModelForCausalLM
    )
    
    model_id = "meta-llama/Llama-3.2-3B-Instruct"
    token = os.environ.get("HF_TOKEN")
    
    bnb_config = BitsAndBytesConfig(
        load_in_4bit=True,
        bnb_4bit_use_double_quant=True,
        bnb_4bit_quant_type="nf4",
        bnb_4bit_compute_dtype=torch.bfloat16
    )
    
    tokenizer = AutoTokenizer.from_pretrained(model_id, token=token)
    model = AutoModelForCausalLM.from_pretrained(
        model_id,
        token=token,
        quantization_config=bnb_config
    )
    
    return model, tokenizer

# Initialize non-GPU components
embeddings = HuggingFaceInstructEmbeddings(
    model_name="hkunlp/instructor-base",
    model_kwargs={"device": "cpu"}
)

db = Chroma(
    persist_directory="db",
    embedding_function=embeddings
)

@spaces.GPU(duration=30)
def respond(message, history, system_message, max_tokens, temperature, top_p):
    try:
        # Initialize model components inside the GPU scope
        model, tokenizer = initialize_model()
        streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
        
        text_pipeline = pipeline(
            "text-generation",
            model=model,
            tokenizer=tokenizer,
            max_new_tokens=max_tokens,
            temperature=temperature,
            top_p=top_p,
            repetition_penalty=1.15,
            streamer=streamer,
        )
        
        llm = HuggingFacePipeline(pipeline=text_pipeline)
        qa_chain = RetrievalQA.from_chain_type(
            llm=llm,
            chain_type="stuff",
            retriever=db.as_retriever(search_kwargs={"k": 2}),
            return_source_documents=False,
            chain_type_kwargs={"prompt": prompt_template}
        )
        
        response = qa_chain.invoke({"query": message})
        yield response["result"]
        
    except Exception as e:
        yield f"An error occurred: {str(e)}"

# Create Gradio interface
demo = gr.ChatInterface(
    respond,
    additional_inputs=[
        gr.Textbox(
            value=DEFAULT_SYSTEM_PROMPT,
            label="System Message",
            lines=3,
            visible=False
        ),
        gr.Slider(
            minimum=1,
            maximum=2048,
            value=500,
            step=1,
            label="Max new tokens"
        ),
        gr.Slider(
            minimum=0.1,
            maximum=4.0,
            value=0.1,
            step=0.1,
            label="Temperature"
        ),
        gr.Slider(
            minimum=0.1,
            maximum=1.0,
            value=0.95,
            step=0.05,
            label="Top-p (nucleus sampling)"
        ),
    ],
    title="ROS2 Expert Assistant",
    description="Ask questions about ROS2, navigation, and robotics. I'll provide concise answers based on the available documentation.",
)

if __name__ == "__main__":
    demo.launch()