Spaces:
Paused
Paused
File size: 7,618 Bytes
3ceffca 30ed7b0 ec25508 ad0aba7 46a011a de5e6eb 3ceffca 46a011a 3ceffca 46a011a 3ceffca 46a011a 3ceffca 30ed7b0 3ceffca 30ed7b0 ec25508 de5e6eb ec25508 30ed7b0 ec25508 3ceffca 30ed7b0 46a011a 30ed7b0 46a011a 30ed7b0 46a011a 30ed7b0 46a011a 30ed7b0 3ceffca d6bfd3e ec25508 46a011a 052856c ec25508 46a011a d6bfd3e ec25508 d6bfd3e ec25508 46a011a d6bfd3e 46a011a d6bfd3e ec25508 d6bfd3e ec25508 d6bfd3e ec25508 d6bfd3e ec25508 d6bfd3e ec25508 46a011a ec25508 46a011a ec25508 46a011a ec25508 46a011a ec25508 46a011a ec25508 46a011a d6bfd3e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 |
import streamlit as st
from PyPDF2 import PdfReader
from docx import Document
import csv
import json
import os
import torch
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import FAISS
from huggingface_hub import login, InferenceClient
from transformers import AutoTokenizer, AutoModelForSequenceClassification
huggingface_token = os.getenv('HUGGINGFACE_TOKEN')
# Realizar el inicio de sesi贸n de Hugging Face solo si el token est谩 disponible
if huggingface_token:
login(token=huggingface_token)
# Configuraci贸n del cliente de inferencia
@st.cache_resource
def load_inference_client():
client = InferenceClient(model="mistralai/Mistral-7B-Instruct-v0.3")
return client
client = load_inference_client()
# Configuraci贸n del modelo de clasificaci贸n
@st.cache_resource
def load_classification_model():
tokenizer = AutoTokenizer.from_pretrained("mrm8488/legal-longformer-base-8192-spanish")
model = AutoModelForSequenceClassification.from_pretrained("mrm8488/legal-longformer-base-8192-spanish")
return model, tokenizer
classification_model, classification_tokenizer = load_classification_model()
id2label = {0: "multas", 1: "politicas_de_privacidad", 2: "contratos", 3: "denuncias", 4: "otros"}
# Cargar documentos JSON para cada categor铆a
@st.cache_resource
def load_json_documents():
documents = {}
categories = ["multas", "politicas_de_privacidad", "contratos", "denuncias", "otros"]
for category in categories:
with open(f"./{category}.json", "r", encoding="utf-8") as f:
data = json.load(f)["questions_and_answers"]
documents[category] = [entry["question"] + " " + entry["answer"] for entry in data]
return documents
json_documents = load_json_documents()
# Configuraci贸n de Embeddings y Vector Stores
@st.cache_resource
def create_vector_store():
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-l6-v2", model_kwargs={"device": "cpu"})
vector_stores = {}
for category, docs in json_documents.items():
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=150)
split_docs = text_splitter.split_text(docs)
vector_stores[category] = FAISS.from_texts(split_docs, embeddings)
return vector_stores
vector_stores = create_vector_store()
def classify_text(text):
inputs = classification_tokenizer(text, return_tensors="pt", max_length=4096, truncation=True, padding="max_length")
classification_model.eval()
with torch.no_grad():
outputs = classification_model(**inputs)
logits = outputs.logits
predicted_class_id = logits.argmax(dim=-1).item()
predicted_label = id2label[predicted_class_id]
return predicted_label
def translate(text, target_language):
template = f'''
Por favor, traduzca el siguiente documento al {target_language}:
<document>
{text}
</document>
Aseg煤rese de que la traducci贸n sea precisa y conserve el significado original del documento.
'''
messages = [{"role": "user", "content": template}]
response = client.chat(messages)
translated_text = response.generated_text
return translated_text
def summarize(text, length):
template = f'''
Por favor, haga un resumen {length} del siguiente documento:
<document>
{text}
</document>
Aseg煤rese de que el resumen sea conciso y conserve el significado original del documento.
'''
messages = [{"role": "user", "content": template}]
response = client.chat(messages)
summarized_text = response.generated_text
return summarized_text
def handle_uploaded_file(uploaded_file):
try:
if uploaded_file.name.endswith(".txt"):
text = uploaded_file.read().decode("utf-8")
elif uploaded_file.name.endswith(".pdf"):
reader = PdfReader(uploaded_file)
text = ""
for page in range(len(reader.pages)):
text += reader.pages[page].extract_text()
elif uploaded_file.name.endswith(".docx"):
doc = Document(uploaded_file)
text = "\n".join([para.text for para in doc.paragraphs])
elif uploaded_file.name.endswith(".csv"):
text = ""
content = uploaded_file.read().decode("utf-8").splitlines()
reader = csv.reader(content)
text = " ".join([" ".join(row) for row in reader])
elif uploaded_file.name.endswith(".json"):
data = json.load(uploaded_file)
text = json.dumps(data, indent=4)
else:
text = "Tipo de archivo no soportado."
return text
except Exception as e:
return str(e)
def main():
st.title("LexAIcon")
st.write("Puedes conversar con este chatbot basado en Mistral-7B-Instruct y subir archivos para que el chatbot los procese.")
if "messages" not in st.session_state:
st.session_state["messages"] = []
with st.sidebar:
st.text_input("HuggingFace Token", value=huggingface_token, type="password", key="huggingface_token")
st.caption("[Consigue un HuggingFace Token](https://huggingface.co/settings/tokens)")
for msg in st.session_state.messages:
st.write(f"**{msg['role'].capitalize()}:** {msg['content']}")
user_input = st.text_input("Introduce tu consulta:", "")
if user_input:
st.session_state.messages.append({"role": "user", "content": user_input})
operation = st.radio("Selecciona una operaci贸n", ["Resumir", "Traducir", "Explicar"])
target_language = None
summary_length = None
if operation == "Traducir":
target_language = st.selectbox("Selecciona el idioma de traducci贸n", ["espa帽ol", "ingl茅s", "franc茅s", "alem谩n"])
if operation == "Resumir":
summary_length = st.selectbox("Selecciona la longitud del resumen", ["corto", "medio", "largo"])
if uploaded_files := st.file_uploader("Sube un archivo", type=["txt", "pdf", "docx", "csv", "json"], accept_multiple_files=True):
for uploaded_file in uploaded_files:
file_content = handle_uploaded_file(uploaded_file)
classification = classify_text(file_content)
vector_store = vector_stores[classification]
search_docs = vector_store.similarity_search(user_input)
context = " ".join([doc.page_content for doc in search_docs])
prompt_with_context = f"Contexto: {context}\n\nPregunta: {user_input}"
messages = [{"role": "user", "content": prompt_with_context}]
response = client.chat(messages)
bot_response = response.generated_text
elif operation == "Resumir":
if summary_length == "corto":
length = "de aproximadamente 50 palabras"
elif summary_length == "medio":
length = "de aproximadamente 100 palabras"
elif summary_length == "largo":
length = "de aproximadamente 500 palabras"
bot_response = summarize(user_input, length)
elif operation == "Traducir":
bot_response = translate(user_input, target_language)
else:
messages = [{"role": "user", "content": user_input}]
response = client.chat(messages)
bot_response = response.generated_text
st.session_state.messages.append({"role": "assistant", "content": bot_response})
st.write(f"**Assistant:** {bot_response}")
if __name__ == "__main__":
main() |