Spaces:
Sleeping
Sleeping
File size: 3,451 Bytes
57a3fc8 005bc4b 57a3fc8 4131518 57a3fc8 bd427aa 57a3fc8 4131518 02ada7f 57a3fc8 bdfdb89 57a3fc8 f9b57d0 4131518 f9b57d0 57a3fc8 f9b57d0 1109bbe f9b57d0 1109bbe f9b57d0 57a3fc8 1109bbe 3239333 ac9ba30 3239333 57a3fc8 84fc864 992d092 57a3fc8 f9b57d0 84fc864 57a3fc8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 |
import datasets
import streamlit as st
import numpy as np
import pandas as pd
import altair as alt
st.set_page_config(layout='wide')
st.markdown("""
# CryptoCEN Expression Scatter
**CryptoCEN** is a co-expression network for *Cryptococcus neoformans* built on 1,524 RNA-seq runs across 34 studies.
A pair of genes are said to be co-expressed when their expression is correlated across different conditions and
is often a marker for genes to be involved in similar processes.
To Cite:
MJ O'Meara, JR Rapala, CB Nichols, C Alexandre, B Billmyre, JL Steenwyk, A Alspaugh,
TR O'Meara CryptoCEN: A Co-Expression Network for Cryptococcus neoformans reveals
novel proteins involved in DNA damage repair
* Code available at https://github.com/maomlab/CalCEN/tree/master/vignettes/CryptoCEN
* Full network and dataset: https://huggingface.co/datasets/maomlab/CryptoCEN
## Plot scatter plot expression for a pair of genes across studies.
Put in the ``CNAG_#####`` gene_id for two genes.
""")
h99_transcript_annotations = datasets.load_dataset(
path = "maomlab/CryptoCEN",
data_files = {"h99_transcript_annotations": "h99_transcript_annotations.tsv"})
h99_transcript_annotations = h99_transcript_annotations["h99_transcript_annotations"].to_pandas()
estimated_expression_meta = datasets.load_dataset(
path = "maomlab/CryptoCEN",
data_files = {"estimated_expression_meta": "Data/estimated_expression_meta.tsv"})
estimated_expression_meta = estimated_expression_meta["estimated_expression_meta"].to_pandas()
estimated_expression = datasets.load_dataset(
path = "maomlab/CryptoCEN",
data_files = {"estimated_expression": "estimated_expression_matrix.parquet"})
estimated_expression = estimated_expression["estimated_expression"].to_pandas()
#DEBUG
print(f"estimated_expression shape: {estimated_expression.shape}")
col1, col2, padding = st.columns(spec = [0.2, 0.2, 0.6])
with col1:
gene_id_1 = st.text_input(
label = "Gene ID 1",
value = "CNAG_04365",
max_chars = 10,
help = "CNAG Gene ID e.g. CNAG_04365")
with col2:
gene_id_2 = st.text_input(
label = "Gene ID 2",
value = "CNAG_04222",
max_chars = 10,
help = "CNAG Gene ID e.g. CNAG_04222")
# check the user input
try:
cnag_id_1 = h99_transcript_annotations.loc[h99_transcript_annotations["gene_id"] == gene_id_1]["cnag_id"].values
except:
st.error(f"Unable to locate cnag_id for Gene ID 1: {gene_id_1}, it should be of the form 'CNAG_######'")
try:
cnag_id_2 = h99_transcript_annotations.loc[h99_transcript_annotations["gene_id"] == gene_id_2]["cnag_id"].values
except:
st.error(f"Unable to locate cnag_id for Gene ID 2: {gene_id_2}, it should be of the form 'CNAG_######'")
chart_data = pd.DataFrame({
"expression_1": np.log10(estimated_expression.loc[h99_transcript_annotations["gene_id"] == gene_id_1].to_numpy()[0] + 1),
"expression_2": np.log10(estimated_expression.loc[h99_transcript_annotations["gene_id"] == gene_id_2].to_numpy()[0] + 1),
"run_accession": estimated_expression.columns})
chart_data = chart_data.merge(
right = estimated_expression_meta,
on = "run_accession")
chart = (
alt.Chart(
chart_data,
width = 750,
height = 750)
.mark_circle()
.encode(
x="expression_1",
y="expression_2",
color="study_accession",
tooltip=["run_accession", "study_accession"]))
st.altair_chart(
chart)
|