File size: 9,935 Bytes
17727c5
 
 
 
 
 
 
 
 
 
 
 
e4a091e
17727c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87d89da
17727c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e4a091e
17727c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e4a091e
17727c5
e4a091e
17727c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e4a091e
17727c5
e4a091e
17727c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e4a091e
17727c5
e4a091e
17727c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
# /// script
# requires-python = ">=3.10"
# dependencies = [
#     "marimo",
#     "matplotlib",
#     "matplotlib-venn"
# ]
# ///

import marimo

__generated_with = "0.11.2"
app = marimo.App(width="medium")


@app.cell
def _():
    import marimo as mo
    return (mo,)


@app.cell
def _():
    import matplotlib.pyplot as plt
    from matplotlib_venn import venn2
    import numpy as np
    return np, plt, venn2


@app.cell(hide_code=True)
def _(mo):
    mo.md(
        r"""
        # Probability of Or

        When calculating the probability of either one event _or_ another occurring, we need to be careful about how we combine probabilities. The method depends on whether the events can happen together[<sup>1</sup>](https://chrispiech.github.io/probabilityForComputerScientists/en/part1/prob_or/).

        Let's explore how to calculate $P(E \cup F)$, i.e. $P(E \text{ or } F)$, in different scenarios.
        """
    )
    return


@app.cell(hide_code=True)
def _(mo):
    mo.md(
        r"""
        ## Mutually Exclusive Events

        Two events $E$ and $F$ are **mutually exclusive** if they cannot occur simultaneously. 
        In set notation, this means:

        $E \cap F = \emptyset$

        For example:

        - Rolling an even number (2,4,6) vs rolling an odd number (1,3,5)
        - Drawing a heart vs drawing a spade from a deck
        - Passing vs failing a test

        Here's a Python function to check if two sets of outcomes are mutually exclusive:
        """
    )
    return


@app.cell
def _():
    def are_mutually_exclusive(event1, event2):
        return len(event1.intersection(event2)) == 0

    # Example with dice rolls
    even_numbers = {2, 4, 6}
    odd_numbers = {1, 3, 5}
    prime_numbers = {2, 3, 5, 7}
    return are_mutually_exclusive, even_numbers, odd_numbers, prime_numbers


@app.cell
def _(are_mutually_exclusive, even_numbers, odd_numbers):
    are_mutually_exclusive(even_numbers, odd_numbers)
    return


@app.cell
def _(are_mutually_exclusive, even_numbers, prime_numbers):
    are_mutually_exclusive(even_numbers, prime_numbers)
    return


@app.cell(hide_code=True)
def _(mo):
    mo.md(
        r"""
        ## Or with Mutually Exclusive Events

        For mutually exclusive events, the probability of either event occurring is simply the sum of their individual probabilities:

        $P(E \cup F) = P(E) + P(F)$

        This extends to multiple events. For $n$ mutually exclusive events $E_1, E_2, \ldots, E_n$:

        $P(E_1 \cup E_2 \cup \cdots \cup E_n) = \sum_{i=1}^n P(E_i)$

        Let's implement this calculation:
        """
    )
    return


@app.cell
def _():
    def prob_union_mutually_exclusive(probabilities):
        return sum(probabilities)

    # Example: Rolling a die
    # P(even) = P(2) + P(4) + P(6)
    p_even_mutually_exclusive = prob_union_mutually_exclusive([1/6, 1/6, 1/6])
    print(f"P(rolling an even number) = {p_even_mutually_exclusive}")

    # P(prime) = P(2) + P(3) + P(5)
    p_prime_mutually_exclusive = prob_union_mutually_exclusive([1/6, 1/6, 1/6])
    print(f"P(rolling a prime number) = {p_prime_mutually_exclusive}")
    return (
        p_even_mutually_exclusive,
        p_prime_mutually_exclusive,
        prob_union_mutually_exclusive,
    )


@app.cell(hide_code=True)
def _(mo):
    mo.md(
        r"""
        ## Or with Non-Mutually Exclusive Events

        When events can occur together, we need to use the **inclusion-exclusion principle**:

        $P(E \cup F) = P(E) + P(F) - P(E \cap F)$

        Why subtract $P(E \cap F)$? Because when we add $P(E)$ and $P(F)$, we count the overlap twice!

        For example, consider calculating $P(\text{prime or even})$ when rolling a die:

        - Prime numbers: {2, 3, 5}
        - Even numbers: {2, 4, 6}
        - The number 2 is counted twice unless we subtract its probability

        Here's how to implement this calculation:
        """
    )
    return


@app.cell
def _():
    def prob_union_general(p_a, p_b, p_intersection):
        """Calculate probability of union for any two events"""
        return p_a + p_b - p_intersection

    # Example: Rolling a die
    # P(prime or even)
    p_prime_general = 3/6    # P(prime) = P(2,3,5)
    p_even_general = 3/6     # P(even) = P(2,4,6)
    p_intersection = 1/6     # P(intersection) = P(2)

    result = prob_union_general(p_prime_general, p_even_general, p_intersection)
    print(f"P(prime or even) = {p_prime_general} + {p_even_general} - {p_intersection} = {result}")
    return (
        p_even_general,
        p_intersection,
        p_prime_general,
        prob_union_general,
        result,
    )


@app.cell(hide_code=True)
def _(mo):
    mo.md(
        r"""
        ### Extension to Three Events

        For three events, the inclusion-exclusion principle becomes:

        $P(E_1 \cup E_2 \cup E_3) = P(E_1) + P(E_2) + P(E_3)$
        $- P(E_1 \cap E_2) - P(E_1 \cap E_3) - P(E_2 \cap E_3)$
        $+ P(E_1 \cap E_2 \cap E_3)$

        The pattern is:

        1. Add individual probabilities
        2. Subtract probabilities of pairs
        3. Add probability of triple intersection
        """
    )
    return


@app.cell(hide_code=True)
def _(mo):
    mo.md(r"""### Interactive example:""")
    return


@app.cell
def _(event_type):
    event_type
    return


@app.cell(hide_code=True)
def _(mo):
    # Create a dropdown to select the type of events to visualize
    event_type = mo.ui.dropdown(
        options=[
            "Mutually Exclusive Events (Rolling Odd vs Even)",
            "Non-Mutually Exclusive Events (Prime vs Even)",
            "Three Events (Less than 3, Even, Prime)"
        ],
        value="Mutually Exclusive Events (Rolling Odd vs Even)",
        label="Select Event Type"
    )
    return (event_type,)


@app.cell(hide_code=True)
def _(event_type, mo, plt, venn2):
    # Define the events and their probabilities
    events_data = {
        "Mutually Exclusive Events (Rolling Odd vs Even)": {
            "sets": (round(3/6, 2), round(3/6, 2), 0),  # (odd, even, intersection)
            "labels": ("Odd\n{1,3,5}", "Even\n{2,4,6}"),
            "title": "Mutually Exclusive Events: Odd vs Even Numbers",
            "explanation": r"""
            ### Mutually Exclusive Events

            $P(\text{Odd}) = \frac{3}{6} = 0.5$

            $P(\text{Even}) = \frac{3}{6} = 0.5$

            $P(\text{Odd} \cap \text{Even}) = 0$

            $P(\text{Odd} \cup \text{Even}) = P(\text{Odd}) + P(\text{Even}) = 1$

            These events are mutually exclusive because a number cannot be both odd and even.
            """
        },
        "Non-Mutually Exclusive Events (Prime vs Even)": {
            "sets": (round(2/6, 2), round(2/6, 2), round(1/6, 2)),  # (prime-only, even-only, intersection)
            "labels": ("Prime\n{3,5}", "Even\n{4,6}"),
            "title": "Non-Mutually Exclusive: Prime vs Even Numbers",
            "explanation": r"""
            ### Non-Mutually Exclusive Events

            $P(\text{Prime}) = \frac{3}{6} = 0.5$ (2,3,5)

            $P(\text{Even}) = \frac{3}{6} = 0.5$ (2,4,6)

            $P(\text{Prime} \cap \text{Even}) = \frac{1}{6}$ (2)

            $P(\text{Prime} \cup \text{Even}) = \frac{3}{6} + \frac{3}{6} - \frac{1}{6} = \frac{5}{6}$

            These events overlap because 2 is both prime and even.
            """
        },
        "Three Events (Less than 3, Even, Prime)": {
            "sets": (round(1/6, 2), round(2/6, 2), round(1/6, 2)),  # (less than 3, even, intersection)
            "labels": ("<3\n{1,2}", "Even\n{2,4,6}"),
            "title": "Complex Example: Numbers < 3 and Even Numbers",
            "explanation": r"""
            ### Complex Event Interaction

            $P(x < 3) = \frac{2}{6}$ (1,2)

            $P(\text{Even}) = \frac{3}{6}$ (2,4,6)

            $P(x < 3 \cap \text{Even}) = \frac{1}{6}$ (2)

            $P(x < 3 \cup \text{Even}) = \frac{2}{6} + \frac{3}{6} - \frac{1}{6} = \frac{4}{6}$

            The number 2 belongs to both sets, requiring the inclusion-exclusion principle.
            """
        }
    }

    # Get data for selected event type
    data = events_data[event_type.value]

    # Create visualization
    plt.figure(figsize=(10, 5))
    v = venn2(subsets=data["sets"], 
              set_labels=data["labels"])
    plt.title(data["title"])

    # Display explanation alongside visualization
    mo.hstack([
        plt.gcf(),
        mo.md(data["explanation"])
    ])
    return data, events_data, v


@app.cell(hide_code=True)
def _(mo):
    mo.md(
        r"""
        ## 🤔 Test Your Understanding

        Consider rolling a six-sided die. Which of these statements are true?

        <details>
        <summary>1. P(even or less than 3) = P(even) + P(less than 3)</summary>

        ❌ Incorrect! These events are not mutually exclusive (2 is both even and less than 3).
        We need to use the inclusion-exclusion principle.
        </details>

        <details>
        <summary>2. P(even or greater than 4) = 4/6</summary>

        ✅ Correct! {2,4,6} ∪ {5,6} = {2,4,5,6}, so probability is 4/6.
        </details>

        <details>
        <summary>3. P(prime or odd) = 5/6</summary>

        ✅ Correct! {2,3,5} ∪ {1,3,5} = {1,2,3,5}, so probability is 5/6.
        </details>
        """
    )
    return


@app.cell(hide_code=True)
def _(mo):
    mo.md(
        """
        ## Summary

        You've learned:

        - How to identify mutually exclusive events
        - The addition rule for mutually exclusive events
        - The inclusion-exclusion principle for overlapping events
        - How to extend these concepts to multiple events

        In the next lesson, we'll explore **conditional probability** - how the probability 
        of one event changes when we know another event has occurred.
        """
    )
    return


if __name__ == "__main__":
    app.run()