Spaces:
Running
Running
File size: 9,935 Bytes
17727c5 e4a091e 17727c5 87d89da 17727c5 e4a091e 17727c5 e4a091e 17727c5 e4a091e 17727c5 e4a091e 17727c5 e4a091e 17727c5 e4a091e 17727c5 e4a091e 17727c5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 |
# /// script
# requires-python = ">=3.10"
# dependencies = [
# "marimo",
# "matplotlib",
# "matplotlib-venn"
# ]
# ///
import marimo
__generated_with = "0.11.2"
app = marimo.App(width="medium")
@app.cell
def _():
import marimo as mo
return (mo,)
@app.cell
def _():
import matplotlib.pyplot as plt
from matplotlib_venn import venn2
import numpy as np
return np, plt, venn2
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
# Probability of Or
When calculating the probability of either one event _or_ another occurring, we need to be careful about how we combine probabilities. The method depends on whether the events can happen together[<sup>1</sup>](https://chrispiech.github.io/probabilityForComputerScientists/en/part1/prob_or/).
Let's explore how to calculate $P(E \cup F)$, i.e. $P(E \text{ or } F)$, in different scenarios.
"""
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
## Mutually Exclusive Events
Two events $E$ and $F$ are **mutually exclusive** if they cannot occur simultaneously.
In set notation, this means:
$E \cap F = \emptyset$
For example:
- Rolling an even number (2,4,6) vs rolling an odd number (1,3,5)
- Drawing a heart vs drawing a spade from a deck
- Passing vs failing a test
Here's a Python function to check if two sets of outcomes are mutually exclusive:
"""
)
return
@app.cell
def _():
def are_mutually_exclusive(event1, event2):
return len(event1.intersection(event2)) == 0
# Example with dice rolls
even_numbers = {2, 4, 6}
odd_numbers = {1, 3, 5}
prime_numbers = {2, 3, 5, 7}
return are_mutually_exclusive, even_numbers, odd_numbers, prime_numbers
@app.cell
def _(are_mutually_exclusive, even_numbers, odd_numbers):
are_mutually_exclusive(even_numbers, odd_numbers)
return
@app.cell
def _(are_mutually_exclusive, even_numbers, prime_numbers):
are_mutually_exclusive(even_numbers, prime_numbers)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
## Or with Mutually Exclusive Events
For mutually exclusive events, the probability of either event occurring is simply the sum of their individual probabilities:
$P(E \cup F) = P(E) + P(F)$
This extends to multiple events. For $n$ mutually exclusive events $E_1, E_2, \ldots, E_n$:
$P(E_1 \cup E_2 \cup \cdots \cup E_n) = \sum_{i=1}^n P(E_i)$
Let's implement this calculation:
"""
)
return
@app.cell
def _():
def prob_union_mutually_exclusive(probabilities):
return sum(probabilities)
# Example: Rolling a die
# P(even) = P(2) + P(4) + P(6)
p_even_mutually_exclusive = prob_union_mutually_exclusive([1/6, 1/6, 1/6])
print(f"P(rolling an even number) = {p_even_mutually_exclusive}")
# P(prime) = P(2) + P(3) + P(5)
p_prime_mutually_exclusive = prob_union_mutually_exclusive([1/6, 1/6, 1/6])
print(f"P(rolling a prime number) = {p_prime_mutually_exclusive}")
return (
p_even_mutually_exclusive,
p_prime_mutually_exclusive,
prob_union_mutually_exclusive,
)
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
## Or with Non-Mutually Exclusive Events
When events can occur together, we need to use the **inclusion-exclusion principle**:
$P(E \cup F) = P(E) + P(F) - P(E \cap F)$
Why subtract $P(E \cap F)$? Because when we add $P(E)$ and $P(F)$, we count the overlap twice!
For example, consider calculating $P(\text{prime or even})$ when rolling a die:
- Prime numbers: {2, 3, 5}
- Even numbers: {2, 4, 6}
- The number 2 is counted twice unless we subtract its probability
Here's how to implement this calculation:
"""
)
return
@app.cell
def _():
def prob_union_general(p_a, p_b, p_intersection):
"""Calculate probability of union for any two events"""
return p_a + p_b - p_intersection
# Example: Rolling a die
# P(prime or even)
p_prime_general = 3/6 # P(prime) = P(2,3,5)
p_even_general = 3/6 # P(even) = P(2,4,6)
p_intersection = 1/6 # P(intersection) = P(2)
result = prob_union_general(p_prime_general, p_even_general, p_intersection)
print(f"P(prime or even) = {p_prime_general} + {p_even_general} - {p_intersection} = {result}")
return (
p_even_general,
p_intersection,
p_prime_general,
prob_union_general,
result,
)
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
### Extension to Three Events
For three events, the inclusion-exclusion principle becomes:
$P(E_1 \cup E_2 \cup E_3) = P(E_1) + P(E_2) + P(E_3)$
$- P(E_1 \cap E_2) - P(E_1 \cap E_3) - P(E_2 \cap E_3)$
$+ P(E_1 \cap E_2 \cap E_3)$
The pattern is:
1. Add individual probabilities
2. Subtract probabilities of pairs
3. Add probability of triple intersection
"""
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(r"""### Interactive example:""")
return
@app.cell
def _(event_type):
event_type
return
@app.cell(hide_code=True)
def _(mo):
# Create a dropdown to select the type of events to visualize
event_type = mo.ui.dropdown(
options=[
"Mutually Exclusive Events (Rolling Odd vs Even)",
"Non-Mutually Exclusive Events (Prime vs Even)",
"Three Events (Less than 3, Even, Prime)"
],
value="Mutually Exclusive Events (Rolling Odd vs Even)",
label="Select Event Type"
)
return (event_type,)
@app.cell(hide_code=True)
def _(event_type, mo, plt, venn2):
# Define the events and their probabilities
events_data = {
"Mutually Exclusive Events (Rolling Odd vs Even)": {
"sets": (round(3/6, 2), round(3/6, 2), 0), # (odd, even, intersection)
"labels": ("Odd\n{1,3,5}", "Even\n{2,4,6}"),
"title": "Mutually Exclusive Events: Odd vs Even Numbers",
"explanation": r"""
### Mutually Exclusive Events
$P(\text{Odd}) = \frac{3}{6} = 0.5$
$P(\text{Even}) = \frac{3}{6} = 0.5$
$P(\text{Odd} \cap \text{Even}) = 0$
$P(\text{Odd} \cup \text{Even}) = P(\text{Odd}) + P(\text{Even}) = 1$
These events are mutually exclusive because a number cannot be both odd and even.
"""
},
"Non-Mutually Exclusive Events (Prime vs Even)": {
"sets": (round(2/6, 2), round(2/6, 2), round(1/6, 2)), # (prime-only, even-only, intersection)
"labels": ("Prime\n{3,5}", "Even\n{4,6}"),
"title": "Non-Mutually Exclusive: Prime vs Even Numbers",
"explanation": r"""
### Non-Mutually Exclusive Events
$P(\text{Prime}) = \frac{3}{6} = 0.5$ (2,3,5)
$P(\text{Even}) = \frac{3}{6} = 0.5$ (2,4,6)
$P(\text{Prime} \cap \text{Even}) = \frac{1}{6}$ (2)
$P(\text{Prime} \cup \text{Even}) = \frac{3}{6} + \frac{3}{6} - \frac{1}{6} = \frac{5}{6}$
These events overlap because 2 is both prime and even.
"""
},
"Three Events (Less than 3, Even, Prime)": {
"sets": (round(1/6, 2), round(2/6, 2), round(1/6, 2)), # (less than 3, even, intersection)
"labels": ("<3\n{1,2}", "Even\n{2,4,6}"),
"title": "Complex Example: Numbers < 3 and Even Numbers",
"explanation": r"""
### Complex Event Interaction
$P(x < 3) = \frac{2}{6}$ (1,2)
$P(\text{Even}) = \frac{3}{6}$ (2,4,6)
$P(x < 3 \cap \text{Even}) = \frac{1}{6}$ (2)
$P(x < 3 \cup \text{Even}) = \frac{2}{6} + \frac{3}{6} - \frac{1}{6} = \frac{4}{6}$
The number 2 belongs to both sets, requiring the inclusion-exclusion principle.
"""
}
}
# Get data for selected event type
data = events_data[event_type.value]
# Create visualization
plt.figure(figsize=(10, 5))
v = venn2(subsets=data["sets"],
set_labels=data["labels"])
plt.title(data["title"])
# Display explanation alongside visualization
mo.hstack([
plt.gcf(),
mo.md(data["explanation"])
])
return data, events_data, v
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
## 🤔 Test Your Understanding
Consider rolling a six-sided die. Which of these statements are true?
<details>
<summary>1. P(even or less than 3) = P(even) + P(less than 3)</summary>
❌ Incorrect! These events are not mutually exclusive (2 is both even and less than 3).
We need to use the inclusion-exclusion principle.
</details>
<details>
<summary>2. P(even or greater than 4) = 4/6</summary>
✅ Correct! {2,4,6} ∪ {5,6} = {2,4,5,6}, so probability is 4/6.
</details>
<details>
<summary>3. P(prime or odd) = 5/6</summary>
✅ Correct! {2,3,5} ∪ {1,3,5} = {1,2,3,5}, so probability is 5/6.
</details>
"""
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
"""
## Summary
You've learned:
- How to identify mutually exclusive events
- The addition rule for mutually exclusive events
- The inclusion-exclusion principle for overlapping events
- How to extend these concepts to multiple events
In the next lesson, we'll explore **conditional probability** - how the probability
of one event changes when we know another event has occurred.
"""
)
return
if __name__ == "__main__":
app.run()
|