Spaces:
Running
Running
# /// script | |
# requires-python = ">=3.10" | |
# dependencies = [ | |
# "marimo", | |
# "matplotlib==3.10.0", | |
# "numpy==2.2.3", | |
# "scipy==1.15.2", | |
# ] | |
# /// | |
import marimo | |
__generated_with = "0.11.10" | |
app = marimo.App(width="medium", app_title="Random Variables") | |
def _(): | |
import marimo as mo | |
return (mo,) | |
def _(): | |
import matplotlib.pyplot as plt | |
import numpy as np | |
from scipy import stats | |
return np, plt, stats | |
def _(mo): | |
mo.md( | |
r""" | |
# Random Variables | |
_This notebook is a computational companion to ["Probability for Computer Scientists"](https://chrispiech.github.io/probabilityForComputerScientists/en/part2/rvs/), by Stanford professor Chris Piech._ | |
Random variables are functions that map outcomes from a probability space to numbers. This mathematical abstraction allows us to: | |
- Work with numerical outcomes in probability | |
- Calculate expected values and variances | |
- Model real-world phenomena quantitatively | |
""" | |
) | |
return | |
def _(mo): | |
mo.md( | |
r""" | |
## Types of Random Variables | |
### Discrete Random Variables | |
- Take on countable values (finite or infinite) | |
- Described by a probability mass function (PMF) | |
- Example: Number of heads in 3 coin flips | |
### Continuous Random Variables | |
- Take on uncountable values in an interval | |
- Described by a probability density function (PDF) | |
- Example: Height of a randomly selected person | |
""" | |
) | |
return | |
def _(mo): | |
mo.md( | |
r""" | |
## Properties of Random Variables | |
Each random variable has several key properties: | |
| Property | Description | Example | | |
|----------|-------------|---------| | |
| Meaning | Semantic description | Number of successes in n trials | | |
| Symbol | Notation used | $X$, $Y$, $Z$ | | |
| Support/Range | Possible values | $\{0,1,2,...,n\}$ for binomial | | |
| Distribution | PMF or PDF | $p_X(x)$ or $f_X(x)$ | | |
| Expectation | Weighted average | $E[X]$ | | |
| Variance | Measure of spread | $\text{Var}(X)$ | | |
| Standard Deviation | Square root of variance | $\sigma_X$ | | |
| Mode | Most likely value | argmax$_x$ $p_X(x)$ | | |
Additional properties include: | |
- [Entropy](https://en.wikipedia.org/wiki/Entropy_(information_theory)) (measure of uncertainty) | |
- [Median](https://en.wikipedia.org/wiki/Median) (middle value) | |
- [Skewness](https://en.wikipedia.org/wiki/Skewness) (asymmetry measure) | |
- [Kurtosis](https://en.wikipedia.org/wiki/Kurtosis) (tail heaviness measure) | |
""" | |
) | |
return | |
def _(mo): | |
mo.md( | |
r""" | |
## Probability Mass Functions (PMF) | |
For discrete random variables, the PMF $p_X(x)$ gives the probability that $X$ equals $x$: | |
$p_X(x) = P(X = x)$ | |
Properties of a PMF: | |
1. $p_X(x) \geq 0$ for all $x$ | |
2. $\sum_x p_X(x) = 1$ | |
Let's implement a PMF for rolling a fair die: | |
""" | |
) | |
return | |
def _(np, plt): | |
def die_pmf(x): | |
if x in [1, 2, 3, 4, 5, 6]: | |
return 1 / 6 | |
return 0 | |
# Plot the PMF | |
_x = np.arange(1, 7) | |
probabilities = [die_pmf(i) for i in _x] | |
plt.figure(figsize=(8, 2)) | |
plt.bar(_x, probabilities) | |
plt.title("PMF of Rolling a Fair Die") | |
plt.xlabel("Outcome") | |
plt.ylabel("Probability") | |
plt.grid(True, alpha=0.3) | |
plt.gca() | |
return die_pmf, probabilities | |
def _(mo): | |
mo.md( | |
r""" | |
## Probability Density Functions (PDF) | |
For continuous random variables, we use a PDF $f_X(x)$. The probability of $X$ falling in an interval $[a,b]$ is: | |
$P(a \leq X \leq b) = \int_a^b f_X(x)dx$ | |
Properties of a PDF: | |
1. $f_X(x) \geq 0$ for all $x$ | |
2. $\int_{-\infty}^{\infty} f_X(x)dx = 1$ | |
Let's look at the normal distribution, a common continuous random variable: | |
""" | |
) | |
return | |
def _(np, plt, stats): | |
# Generate points for plotting | |
_x = np.linspace(-4, 4, 100) | |
_pdf = stats.norm.pdf(_x, loc=0, scale=1) | |
plt.figure(figsize=(8, 4)) | |
plt.plot(_x, _pdf, "b-", label="PDF") | |
plt.fill_between(_x, _pdf, where=(_x >= -1) & (_x <= 1), alpha=0.3) | |
plt.title("Standard Normal Distribution") | |
plt.xlabel("x") | |
plt.ylabel("Density") | |
plt.grid(True, alpha=0.3) | |
plt.legend() | |
return | |
def _(mo): | |
mo.md( | |
r""" | |
## Expected Value | |
The expected value $E[X]$ is the long-run average of a random variable. | |
For discrete random variables: | |
$E[X] = \sum_x x \cdot p_X(x)$ | |
For continuous random variables: | |
$E[X] = \int_{-\infty}^{\infty} x \cdot f_X(x)dx$ | |
Properties: | |
1. $E[aX + b] = aE[X] + b$ | |
2. $E[X + Y] = E[X] + E[Y]$ | |
""" | |
) | |
return | |
def _(np): | |
def expected_value_discrete(x_values, probabilities): | |
return sum(x * p for x, p in zip(x_values, probabilities)) | |
# Example: Expected value of a fair die roll | |
die_values = np.arange(1, 7) | |
die_probs = np.ones(6) / 6 | |
E_X = expected_value_discrete(die_values, die_probs) | |
return E_X, die_probs, die_values, expected_value_discrete | |
def _(E_X): | |
E_X | |
return | |
def _(mo): | |
mo.md( | |
r""" | |
## Variance | |
The variance $\text{Var}(X)$ measures the spread of a random variable around its mean: | |
$\text{Var}(X) = E[(X - E[X])^2]$ | |
This can be computed as: | |
$\text{Var}(X) = E[X^2] - (E[X])^2$ | |
Properties: | |
1. $\text{Var}(aX) = a^2Var(X)$ | |
2. $\text{Var}(X + b) = Var(X)$ | |
""" | |
) | |
return | |
def _(E_X, die_probs, die_values, np): | |
def variance_discrete(x_values, probabilities, expected_value): | |
squared_diff = [(x - expected_value) ** 2 for x in x_values] | |
return sum(d * p for d, p in zip(squared_diff, probabilities)) | |
# Example: Variance of a fair die roll | |
var_X = variance_discrete(die_values, die_probs, E_X) | |
std_X = np.sqrt(var_X) | |
return std_X, var_X, variance_discrete | |
def _(mo, std_X, var_X): | |
mo.md( | |
f""" | |
### Examples of Variance Calculation | |
For our fair die example: | |
- Variance: {var_X:.2f} | |
- Standard Deviation: {std_X:.2f} | |
This means that on average, a roll deviates from the mean (3.5) by about {std_X:.2f} units. | |
Let's look another example for a fair coin: | |
""" | |
) | |
return | |
def _(variance_discrete): | |
# Fair coin (X = 0 or 1) | |
coin_values = [0, 1] | |
coin_probs = [0.5, 0.5] | |
coin_mean = sum(x * p for x, p in zip(coin_values, coin_probs)) | |
coin_var = variance_discrete(coin_values, coin_probs, coin_mean) | |
return coin_mean, coin_probs, coin_values, coin_var | |
def _(np, stats, variance_discrete): | |
# Standard normal (discretized for example) | |
normal_values = np.linspace(-3, 3, 100) | |
normal_probs = stats.norm.pdf(normal_values) | |
normal_probs = normal_probs / sum(normal_probs) # normalize | |
normal_mean = 0 | |
normal_var = variance_discrete(normal_values, normal_probs, normal_mean) | |
return normal_mean, normal_probs, normal_values, normal_var | |
def _(np, variance_discrete): | |
# Uniform on [0,1] (discretized for example) | |
uniform_values = np.linspace(0, 1, 100) | |
uniform_probs = np.ones_like(uniform_values) / len(uniform_values) | |
uniform_mean = 0.5 | |
uniform_var = variance_discrete(uniform_values, uniform_probs, uniform_mean) | |
return uniform_mean, uniform_probs, uniform_values, uniform_var | |
def _(coin_var, mo, normal_var, uniform_var): | |
mo.md( | |
rf""" | |
Let's look at some calculated variances: | |
- Fair coin (X = 0 or 1): $\text{{Var}}(X) = {coin_var:.4f}$ | |
- Standard normal distribution (discretized): $\text{{Var(X)}} ≈ {normal_var:.4f}$ | |
- Uniform distribution on $[0,1]$ (discretized): $\text{{Var(X)}} ≈ {uniform_var:.4f}$ | |
""" | |
) | |
return | |
def _(mo): | |
mo.md( | |
r""" | |
## Common Distributions | |
1. Bernoulli Distribution | |
- Models a single success/failure experiment | |
- $P(X = 1) = p$, $P(X = 0) = 1-p$ | |
- $E[X] = p$, $\text{Var}(X) = p(1-p)$ | |
2. Binomial Distribution | |
- Models number of successes in $n$ independent trials | |
- $P(X = k) = \binom{n}{k}p^k(1-p)^{n-k}$ | |
- $E[X] = np$, $\text{Var}(X) = np(1-p)$ | |
3. Normal Distribution | |
- Bell-shaped curve defined by mean $\mu$ and variance $\sigma^2$ | |
- PDF: $f_X(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$ | |
- $E[X] = \mu$, $\text{Var}(X) = \sigma^2$ | |
""" | |
) | |
return | |
def _(mo): | |
mo.md( | |
r""" | |
### Example: Comparing Discrete and Continuous Distributions | |
This example shows the relationship between a Binomial distribution (discrete) and its Normal approximation (continuous). | |
The parameters control both distributions: | |
- **Number of Trials**: Controls the range of possible values and the shape's width | |
- **Success Probability**: Affects the distribution's center and skewness | |
""" | |
) | |
return | |
def _(mo, n_trials, p_success): | |
mo.hstack([n_trials, p_success], justify="space-around") | |
return | |
def _(mo): | |
# Distribution parameters | |
n_trials = mo.ui.slider(1, 20, value=10, label="Number of Trials") | |
p_success = mo.ui.slider(0, 1, value=0.5, step=0.05, label="Success Probability") | |
return n_trials, p_success | |
def _(n_trials, np, p_success, plt, stats): | |
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 3)) | |
# Discrete: Binomial PMF | |
k = np.arange(0, n_trials.value + 1) | |
pmf = stats.binom.pmf(k, n_trials.value, p_success.value) | |
ax1.bar(k, pmf, alpha=0.8, color="#1f77b4", label="PMF") | |
ax1.set_title(f"Binomial PMF (n={n_trials.value}, p={p_success.value})") | |
ax1.set_xlabel("Number of Successes") | |
ax1.set_ylabel("Probability") | |
ax1.grid(True, alpha=0.3) | |
# Continuous: Normal PDF approx. | |
mu = n_trials.value * p_success.value | |
sigma = np.sqrt(n_trials.value * p_success.value * (1 - p_success.value)) | |
x = np.linspace(max(0, mu - 4 * sigma), min(n_trials.value, mu + 4 * sigma), 100) | |
pdf = stats.norm.pdf(x, mu, sigma) | |
ax2.plot(x, pdf, "r-", linewidth=2, label="PDF") | |
ax2.fill_between(x, pdf, alpha=0.3, color="red") | |
ax2.set_title(f"Normal PDF (μ={mu:.1f}, σ={sigma:.1f})") | |
ax2.set_xlabel("Continuous Approximation") | |
ax2.set_ylabel("Density") | |
ax2.grid(True, alpha=0.3) | |
# Set consistent x-axis limits for better comparison | |
ax1.set_xlim(-0.5, n_trials.value + 0.5) | |
ax2.set_xlim(-0.5, n_trials.value + 0.5) | |
plt.tight_layout() | |
plt.gca() | |
return ax1, ax2, fig, k, mu, pdf, pmf, sigma, x | |
def _(mo, n_trials, np, p_success): | |
mo.md(f""" | |
**Current Distribution Properties:** | |
- Mean (μ) = {n_trials.value * p_success.value:.2f} | |
- Standard Deviation (σ) = {np.sqrt(n_trials.value * p_success.value * (1 - p_success.value)):.2f} | |
Notice how the Normal distribution (right) approximates the Binomial distribution (left) better when: | |
1. The number of trials is larger | |
2. The success probability is closer to 0.5 | |
""") | |
return | |
def _(mo): | |
mo.md( | |
r""" | |
## Practice Problems | |
### Problem 1: Discrete Random Variable | |
Let $X$ be the sum when rolling two fair dice. Find: | |
1. The support of $X$ | |
2. The PMF $p_X(x)$ | |
3. $E[X]$ and $\text{Var}(X)$ | |
<details> | |
<summary>Solution</summary> | |
Let's solve this step by step: | |
```python | |
def two_dice_pmf(x): | |
outcomes = [(i,j) for i in range(1,7) for j in range(1,7)] | |
favorable = [pair for pair in outcomes if sum(pair) == x] | |
return len(favorable)/36 | |
# Support: {2,3,...,12} | |
# E[X] = 7 | |
# Var(X) = 5.83 | |
``` | |
</details> | |
### Problem 2: Continuous Random Variable | |
For a uniform random variable on $[0,1]$, verify that: | |
1. The PDF integrates to 1 | |
2. $E[X] = 1/2$ | |
3. $\text{Var}(X) = 1/12$ | |
Try solving this yourself first, then check the solution below. | |
""" | |
) | |
return | |
def _(): | |
# DIY | |
return | |
def _(mktext, mo): | |
mo.accordion({"Solution": mktext}, lazy=True) | |
return | |
def _(mo): | |
mktext = mo.md( | |
r""" | |
Let's solve each part: | |
1. **PDF integrates to 1**: | |
$\int_0^1 1 \, dx = [x]_0^1 = 1 - 0 = 1$ | |
2. **Expected Value**: | |
$E[X] = \int_0^1 x \cdot 1 \, dx = [\frac{x^2}{2}]_0^1 = \frac{1}{2} - 0 = \frac{1}{2}$ | |
3. **Variance**: | |
$\text{Var}(X) = E[X^2] - (E[X])^2$ | |
First calculate $E[X^2]$: | |
$E[X^2] = \int_0^1 x^2 \cdot 1 \, dx = [\frac{x^3}{3}]_0^1 = \frac{1}{3}$ | |
Then: | |
$\text{Var}(X) = \frac{1}{3} - (\frac{1}{2})^2 = \frac{1}{3} - \frac{1}{4} = \frac{1}{12}$ | |
""" | |
) | |
return (mktext,) | |
def _(mo): | |
mo.md( | |
r""" | |
## 🤔 Test Your Understanding | |
Pick which of these statements about random variables you think are correct: | |
<details> | |
<summary>The probability density function can be greater than 1</summary> | |
✅ Correct! Unlike PMFs, PDFs can exceed 1 as long as the total area equals 1. | |
</details> | |
<details> | |
<summary>The expected value of a random variable must equal one of its possible values</summary> | |
❌ Incorrect! For example, the expected value of a fair die is 3.5, which is not a possible outcome. | |
</details> | |
<details> | |
<summary>Adding a constant to a random variable changes its variance</summary> | |
❌ Incorrect! Adding a constant shifts the distribution but doesn't affect its spread. | |
</details> | |
""" | |
) | |
return | |
def _(mo): | |
mo.md( | |
""" | |
## Summary | |
You've learned: | |
- The difference between discrete and continuous random variables | |
- How PMFs and PDFs describe probability distributions | |
- Methods for calculating expected values and variances | |
- Properties of common probability distributions | |
In the next lesson, we'll explore Probability Mass Functions in detail, focusing on their properties and applications. | |
""" | |
) | |
return | |
if __name__ == "__main__": | |
app.run() | |