File size: 8,442 Bytes
55e027c
104cf1c
b9dc38b
104cf1c
ce202f9
 
 
104cf1c
90ce14b
 
 
 
 
3c2937a
77f2c42
5e4ca56
 
ff3263f
0137c6b
b9dc38b
77f2c42
3c2937a
 
8fdf34e
ce202f9
 
 
 
 
 
 
 
 
 
8fdf34e
ed31090
77f2c42
4475ab1
8fdf34e
75b3db6
8fdf34e
 
 
 
ce202f9
6b15272
eb9d06b
4333f18
9f551dd
ccade22
b8f3115
cc35102
b8f3115
cc35102
b8f3115
 
cc35102
b8f3115
 
cc35102
e930b75
 
02f41f3
3b2bedf
4b9ef74
3ac03d8
 
 
 
cef64b2
 
0b2092a
ccade22
 
 
d708c00
 
9c8c84b
 
 
75dddd5
 
7620bdc
 
 
c6d16d4
ccade22
 
 
 
 
 
9c7114f
ccade22
03f9025
18731f2
 
 
104cf1c
 
 
 
 
77f2c42
 
cc35102
77f2c42
cc35102
77f2c42
 
cc35102
77f2c42
cc35102
 
25b27e3
 
77f2c42
6a2dc28
77f2c42
 
be28103
c12b724
 
be28103
 
0bfc663
 
 
007393b
be28103
 
 
8fdf34e
 
9c7114f
2cb5d92
 
 
 
 
 
be28103
 
ab74909
8fdf34e
 
 
 
 
dbdf4db
8fdf34e
 
 
 
 
be28103
8fdf34e
ab74909
8fdf34e
 
 
 
 
 
 
 
 
be28103
8fdf34e
 
9bfafbf
f8a0305
 
 
 
 
 
6213fb0
da0fe02
 
6213fb0
9bfafbf
 
4f493c8
 
 
 
 
 
 
 
 
 
 
 
9bfafbf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f493c8
 
 
9bfafbf
 
 
 
 
 
 
4f493c8
 
9bfafbf
 
 
 
4f493c8
 
 
 
 
3211445
4f493c8
 
 
 
 
 
9bfafbf
 
4f493c8
 
 
9bfafbf
c06298e
 
ab5870b
9bfafbf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
# -*- coding:utf-8 -*-
import os
from pathlib import Path
import gradio as gr
from .webui_locale import I18nAuto

i18n = I18nAuto()  # internationalization

CHATGLM_MODEL = None
CHATGLM_TOKENIZER = None
LLAMA_MODEL = None
LLAMA_INFERENCER = None

# ChatGPT 设置
INITIAL_SYSTEM_PROMPT = "You are a helpful assistant."
API_HOST = "api.openai.com"
COMPLETION_URL = "https://api.openai.com/v1/chat/completions"
BALANCE_API_URL="https://api.openai.com/dashboard/billing/credit_grants"
USAGE_API_URL="https://api.openai.com/dashboard/billing/usage"
HISTORY_DIR = Path("history")
HISTORY_DIR = "history"
TEMPLATES_DIR = "templates"

# 错误信息
STANDARD_ERROR_MSG = i18n("☹️发生了错误:")  # 错误信息的标准前缀
GENERAL_ERROR_MSG = i18n("获取对话时发生错误,请查看后台日志")
ERROR_RETRIEVE_MSG = i18n("请检查网络连接,或者API-Key是否有效。")
CONNECTION_TIMEOUT_MSG = i18n("连接超时,无法获取对话。")  # 连接超时
READ_TIMEOUT_MSG = i18n("读取超时,无法获取对话。")  # 读取超时
PROXY_ERROR_MSG = i18n("代理错误,无法获取对话。")  # 代理错误
SSL_ERROR_PROMPT = i18n("SSL错误,无法获取对话。")  # SSL 错误
NO_APIKEY_MSG = i18n("API key为空,请检查是否输入正确。")  # API key 长度不足 51 位
NO_INPUT_MSG = i18n("请输入对话内容。")  # 未输入对话内容
BILLING_NOT_APPLICABLE_MSG = i18n("账单信息不适用") # 本地运行的模型返回的账单信息

TIMEOUT_STREAMING = 60  # 流式对话时的超时时间
TIMEOUT_ALL = 200  # 非流式对话时的超时时间
ENABLE_STREAMING_OPTION = True  # 是否启用选择选择是否实时显示回答的勾选框
HIDE_MY_KEY = False  # 如果你想在UI中隐藏你的 API 密钥,将此值设置为 True
CONCURRENT_COUNT = 100 # 允许同时使用的用户数量

SIM_K = 5
INDEX_QUERY_TEMPRATURE = 1.0

CHUANHU_TITLE = i18n("川虎Chat 🚀")

CHUANHU_DESCRIPTION = i18n("由Bilibili [土川虎虎虎](https://space.bilibili.com/29125536)、[明昭MZhao](https://space.bilibili.com/24807452) 和 [Keldos](https://github.com/Keldos-Li) 开发<br />访问川虎Chat的 [GitHub项目](https://github.com/GaiZhenbiao/ChuanhuChatGPT) 下载最新版脚本")


ONLINE_MODELS = [
    "gpt-3.5-turbo",
    "gpt-3.5-turbo-16k",
    "gpt-3.5-turbo-0301",
    "gpt-3.5-turbo-0613",
    "gpt-4",
    "gpt-4-0314",
    "gpt-4-0613",
    "gpt-4-32k",
    "gpt-4-32k-0314",
    "gpt-4-32k-0613",
    "川虎助理",
    "川虎助理 Pro",
    "GooglePaLM",
    "xmchat",
    "Azure OpenAI",
    "yuanai-1.0-base_10B",
    "yuanai-1.0-translate",
    "yuanai-1.0-dialog",
    "yuanai-1.0-rhythm_poems",
    "minimax-abab4-chat",
    "minimax-abab5-chat",
    "midjourney"
]

LOCAL_MODELS = [
    "chatglm-6b",
    "chatglm-6b-int4",
    "chatglm-6b-int4-ge",
    "chatglm2-6b",
    "chatglm2-6b-int4",
    "StableLM",
    "MOSS",
    "llama-7b-hf",
    "llama-13b-hf",
    "llama-30b-hf",
    "llama-65b-hf",
]

if os.environ.get('HIDE_LOCAL_MODELS', 'false') == 'true':
    MODELS = ONLINE_MODELS
else:
    MODELS = ONLINE_MODELS + LOCAL_MODELS

DEFAULT_MODEL = 0

os.makedirs("models", exist_ok=True)
os.makedirs("lora", exist_ok=True)
os.makedirs("history", exist_ok=True)
for dir_name in os.listdir("models"):
    if os.path.isdir(os.path.join("models", dir_name)):
        if dir_name not in MODELS:
            MODELS.append(dir_name)

MODEL_TOKEN_LIMIT = {
    "gpt-3.5-turbo": 4096,
    "gpt-3.5-turbo-16k": 16384,
    "gpt-3.5-turbo-0301": 4096,
    "gpt-3.5-turbo-0613": 4096,
    "gpt-4": 8192,
    "gpt-4-0314": 8192,
    "gpt-4-0613": 8192,
    "gpt-4-32k": 32768,
    "gpt-4-32k-0314": 32768,
    "gpt-4-32k-0613": 32768
}

TOKEN_OFFSET = 1000 # 模型的token上限减去这个值,得到软上限。到达软上限之后,自动尝试减少token占用。
DEFAULT_TOKEN_LIMIT = 3000 # 默认的token上限
REDUCE_TOKEN_FACTOR = 0.5 # 与模型token上限想乘,得到目标token数。减少token占用时,将token占用减少到目标token数以下。

REPLY_LANGUAGES = [
    "简体中文",
    "繁體中文",
    "English",
    "日本語",
    "Español",
    "Français",
    "Deutsch",
    "한국어",
    "跟随问题语言(不稳定)"
]


WEBSEARCH_PTOMPT_TEMPLATE = """\
Web search results:

{web_results}
Current date: {current_date}

Instructions: Using the provided web search results, write a comprehensive reply to the given query. Make sure to cite results using [[number](URL)] notation after the reference. If the provided search results refer to multiple subjects with the same name, write separate answers for each subject.
Query: {query}
Reply in {reply_language}
"""

PROMPT_TEMPLATE = """\
Context information is below.
---------------------
{context_str}
---------------------
Current date: {current_date}.
Using the provided context information, write a comprehensive reply to the given query.
Make sure to cite results using [number] notation after the reference.
If the provided context information refer to multiple subjects with the same name, write separate answers for each subject.
Use prior knowledge only if the given context didn't provide enough information.
Answer the question: {query_str}
Reply in {reply_language}
"""

REFINE_TEMPLATE = """\
The original question is as follows: {query_str}
We have provided an existing answer: {existing_answer}
We have the opportunity to refine the existing answer
(only if needed) with some more context below.
------------
{context_msg}
------------
Given the new context, refine the original answer to better
Reply in {reply_language}
If the context isn't useful, return the original answer.
"""

SUMMARIZE_PROMPT = """Write a concise summary of the following:

{text}

CONCISE SUMMARY IN 中文:"""

ALREADY_CONVERTED_MARK = "<!-- ALREADY CONVERTED BY PARSER. -->"
START_OF_OUTPUT_MARK = "<!-- SOO IN MESSAGE -->"
END_OF_OUTPUT_MARK = "<!-- EOO IN MESSAGE -->"

small_and_beautiful_theme = gr.themes.Soft(
        primary_hue=gr.themes.Color(
            c50="#EBFAF2",
            c100="#CFF3E1",
            c200="#A8EAC8",
            c300="#77DEA9",
            c400="#3FD086",
            c500="#02C160",
            c600="#06AE56",
            c700="#05974E",
            c800="#057F45",
            c900="#04673D",
            c950="#2E5541",
            name="small_and_beautiful",
        ),
        secondary_hue=gr.themes.Color(
            c50="#576b95",
            c100="#576b95",
            c200="#576b95",
            c300="#576b95",
            c400="#576b95",
            c500="#576b95",
            c600="#576b95",
            c700="#576b95",
            c800="#576b95",
            c900="#576b95",
            c950="#576b95",
        ),
        neutral_hue=gr.themes.Color(
            name="gray",
            c50="#f6f7f8",
            # c100="#f3f4f6",
            c100="#F2F2F2",
            c200="#e5e7eb",
            c300="#d1d5db",
            c400="#B2B2B2",
            c500="#808080",
            c600="#636363",
            c700="#515151",
            c800="#393939",
            # c900="#272727",
            c900="#2B2B2B",
            c950="#171717",
        ),
        radius_size=gr.themes.sizes.radius_sm,
    ).set(
        # button_primary_background_fill="*primary_500",
        button_primary_background_fill_dark="*primary_600",
        # button_primary_background_fill_hover="*primary_400",
        # button_primary_border_color="*primary_500",
        button_primary_border_color_dark="*primary_600",
        button_primary_text_color="white",
        button_primary_text_color_dark="white",
        button_secondary_background_fill="*neutral_100",
        button_secondary_background_fill_hover="*neutral_50",
        button_secondary_background_fill_dark="*neutral_900",
        button_secondary_text_color="*neutral_800",
        button_secondary_text_color_dark="white",
        # background_fill_primary="#F7F7F7",
        # background_fill_primary_dark="#1F1F1F",
        # block_title_text_color="*primary_500",
        block_title_background_fill_dark="*primary_900",
        block_label_background_fill_dark="*primary_900",
        input_background_fill="#F6F6F6",
        # chatbot_code_background_color="*neutral_950",
        # gradio 会把这个几个chatbot打头的变量应用到其他md渲染的地方,鬼晓得怎么想的。。。
        chatbot_code_background_color_dark="*neutral_950",
    )