Spaces:
Build error
Build error
import settings | |
import captum | |
import numpy as np | |
import torch | |
import torch.nn.functional as F | |
import torch.backends.cudnn as cudnn | |
from utils import get_args | |
from utils import CTCLabelConverter, AttnLabelConverter, Averager, TokenLabelConverter | |
import string | |
import time | |
import sys | |
from dataset import hierarchical_dataset, AlignCollate | |
import validators | |
from model import Model, STRScore | |
from PIL import Image | |
from lime.wrappers.scikit_image import SegmentationAlgorithm | |
from captum._utils.models.linear_model import SkLearnLinearModel, SkLearnRidge | |
import random | |
import os | |
from skimage.color import gray2rgb | |
import pickle | |
from train_shap_corr import getPredAndConf | |
import re | |
from captum_test import acquire_average_auc, saveAttrData | |
import copy | |
from skimage.color import gray2rgb | |
from matplotlib import pyplot as plt | |
from torchvision import transforms | |
device = torch.device('cpu') | |
from captum.attr import ( | |
GradientShap, | |
DeepLift, | |
DeepLiftShap, | |
IntegratedGradients, | |
LayerConductance, | |
NeuronConductance, | |
NoiseTunnel, | |
Saliency, | |
InputXGradient, | |
GuidedBackprop, | |
Deconvolution, | |
GuidedGradCam, | |
FeatureAblation, | |
ShapleyValueSampling, | |
Lime, | |
KernelShap | |
) | |
from captum.metrics import ( | |
infidelity, | |
sensitivity_max | |
) | |
from captum.attr._utils.visualization import visualize_image_attr | |
### Acquire pixelwise attributions and replace them with ranked numbers averaged | |
### across segmentation with the largest contribution having the largest number | |
### and the smallest set to 1, which is the minimum number. | |
### attr - original attribution | |
### segm - image segmentations | |
def rankedAttributionsBySegm(attr, segm): | |
aveSegmentations, sortedDict = averageSegmentsOut(attr[0,0], segm) | |
totalSegm = len(sortedDict.keys()) # total segmentations | |
sortedKeys = [k for k, v in sorted(sortedDict.items(), key=lambda item: item[1])] | |
sortedKeys = sortedKeys[::-1] ### A list that should contain largest to smallest score | |
currentRank = totalSegm | |
rankedSegmImg = torch.clone(attr) | |
for totalSegToHide in range(0, len(sortedKeys)): | |
currentSegmentToHide = sortedKeys[totalSegToHide] | |
rankedSegmImg[0,0][segm == currentSegmentToHide] = currentRank | |
currentRank -= 1 | |
return rankedSegmImg | |
### Returns the mean for each segmentation having shape as the same as the input | |
### This function can only one attribution image at a time | |
def averageSegmentsOut(attr, segments): | |
averagedInput = torch.clone(attr) | |
sortedDict = {} | |
for x in np.unique(segments): | |
segmentMean = torch.mean(attr[segments == x][:]) | |
sortedDict[x] = float(segmentMean.detach().cpu().numpy()) | |
averagedInput[segments == x] = segmentMean | |
return averagedInput, sortedDict | |
### Output and save segmentations only for one dataset only | |
def outputSegmOnly(opt): | |
### targetDataset - one dataset only, SVTP-645, CUTE80-288images | |
targetDataset = "CUTE80" # ['IIIT5k_3000', 'SVT', 'IC03_867', 'IC13_1015', 'IC15_2077', 'SVTP', 'CUTE80'] | |
segmRootDir = "/home/uclpc1/Documents/STR/datasets/segmentations/224X224/{}/".format(targetDataset) | |
if not os.path.exists(segmRootDir): | |
os.makedirs(segmRootDir) | |
opt.eval = True | |
### Only IIIT5k_3000 | |
if opt.fast_acc: | |
# # To easily compute the total accuracy of our paper. | |
eval_data_list = [targetDataset] | |
else: | |
# The evaluation datasets, dataset order is same with Table 1 in our paper. | |
eval_data_list = [targetDataset] | |
### Taken from LIME | |
segmentation_fn = SegmentationAlgorithm('quickshift', kernel_size=4, | |
max_dist=200, ratio=0.2, | |
random_seed=random.randint(0, 1000)) | |
for eval_data in eval_data_list: | |
eval_data_path = os.path.join(opt.eval_data, eval_data) | |
AlignCollate_evaluation = AlignCollate(imgH=opt.imgH, imgW=opt.imgW, keep_ratio_with_pad=opt.PAD, opt=opt) | |
eval_data, eval_data_log = hierarchical_dataset(root=eval_data_path, opt=opt) | |
evaluation_loader = torch.utils.data.DataLoader( | |
eval_data, batch_size=1, | |
shuffle=False, | |
num_workers=int(opt.workers), | |
collate_fn=AlignCollate_evaluation, pin_memory=True) | |
for i, (image_tensors, labels) in enumerate(evaluation_loader): | |
imgDataDict = {} | |
img_numpy = image_tensors.cpu().detach().numpy()[0] ### Need to set batch size to 1 only | |
if img_numpy.shape[0] == 1: | |
img_numpy = gray2rgb(img_numpy[0]) | |
# print("img_numpy shape: ", img_numpy.shape) # (224,224,3) | |
segmOutput = segmentation_fn(img_numpy) | |
imgDataDict['segdata'] = segmOutput | |
imgDataDict['label'] = labels[0] | |
outputPickleFile = segmRootDir + "{}.pkl".format(i) | |
with open(outputPickleFile, 'wb') as f: | |
pickle.dump(imgDataDict, f) | |
def acquireSelectivityHit(origImg, attributions, segmentations, model, converter, labels, scoring): | |
# print("segmentations unique len: ", np.unique(segmentations)) | |
aveSegmentations, sortedDict = averageSegmentsOut(attributions[0,0], segmentations) | |
sortedKeys = [k for k, v in sorted(sortedDict.items(), key=lambda item: item[1])] | |
sortedKeys = sortedKeys[::-1] ### A list that should contain largest to smallest score | |
# print("sortedDict: ", sortedDict) # {0: -5.51e-06, 1: -1.469e-05, 2: -3.06e-05,...} | |
# print("aveSegmentations unique len: ", np.unique(aveSegmentations)) | |
# print("aveSegmentations device: ", aveSegmentations.device) # cuda:0 | |
# print("aveSegmentations shape: ", aveSegmentations.shape) # (224,224) | |
# print("aveSegmentations: ", aveSegmentations) | |
n_correct = [] | |
confidenceList = [] # First index is one feature removed, second index two features removed, and so on... | |
clonedImg = torch.clone(origImg) | |
gt = str(labels) | |
for totalSegToHide in range(0, len(sortedKeys)): | |
### Acquire LIME prediction result | |
currentSegmentToHide = sortedKeys[totalSegToHide] | |
clonedImg[0,0][segmentations == currentSegmentToHide] = 0.0 | |
pred, confScore = getPredAndConf(opt, model, scoring, clonedImg, converter, np.array([gt])) | |
# To evaluate 'case sensitive model' with alphanumeric and case insensitve setting. | |
if opt.sensitive and opt.data_filtering_off: | |
pred = pred.lower() | |
gt = gt.lower() | |
alphanumeric_case_insensitve = '0123456789abcdefghijklmnopqrstuvwxyz' | |
out_of_alphanumeric_case_insensitve = f"[^{alphanumeric_case_insensitve}]" | |
pred = re.sub(out_of_alphanumeric_case_insensitve, '', pred) | |
gt = re.sub(out_of_alphanumeric_case_insensitve, '', gt) | |
if pred == gt: | |
n_correct.append(1) | |
else: | |
n_correct.append(0) | |
confScore = confScore[0][0]*100 | |
confidenceList.append(confScore) | |
return n_correct, confidenceList | |
### Once you have the selectivity_eval_results.pkl file, | |
def acquire_selectivity_auc(opt, pkl_filename=None): | |
if pkl_filename is None: | |
pkl_filename = "/home/goo/str/str_vit_dataexplain_lambda/metrics_sensitivity_eval_results_CUTE80.pkl" # VITSTR | |
accKeys = [] | |
with open(pkl_filename, 'rb') as f: | |
selectivity_data = pickle.load(f) | |
for resDictIdx, resDict in enumerate(selectivity_data): | |
keylistAcc = [] | |
keylistConf = [] | |
metricsKeys = resDict.keys() | |
for keyStr in resDict.keys(): | |
if "_acc" in keyStr: keylistAcc.append(keyStr) | |
if "_conf" in keyStr: keylistConf.append(keyStr) | |
# Need to check if network correctly predicted the image | |
for metrics_accStr in keylistAcc: | |
if 1 not in resDict[metrics_accStr]: print("resDictIdx") | |
# Single directory STRExp explanations output demo | |
def sampleDemo(opt, modelName): | |
targetDataset = "SVTP" | |
demoImgDir = "demo_image/" | |
outputDir = "demo_image_output/" | |
if not os.path.exists(outputDir): | |
os.makedirs(outputDir) | |
segmentation_fn = SegmentationAlgorithm('quickshift', kernel_size=4, | |
max_dist=200, ratio=0.2, | |
random_seed=random.randint(0, 1000)) | |
if modelName=="vitstr": | |
if opt.Transformer: | |
converter = TokenLabelConverter(opt) | |
elif 'CTC' in opt.Prediction: | |
converter = CTCLabelConverter(opt.character) | |
else: | |
converter = AttnLabelConverter(opt.character) | |
opt.num_class = len(converter.character) | |
if opt.rgb: | |
opt.input_channel = 3 | |
model_obj = Model(opt) | |
model = torch.nn.DataParallel(model_obj).to(device) | |
modelCopy = copy.deepcopy(model) | |
""" evaluation """ | |
scoring_singlechar = STRScore(opt=opt, converter=converter, device=device, enableSingleCharAttrAve=True) | |
super_pixel_model_singlechar = torch.nn.Sequential( | |
# super_pixler, | |
# numpy2torch_converter, | |
modelCopy, | |
scoring_singlechar | |
).to(device) | |
modelCopy.eval() | |
scoring_singlechar.eval() | |
super_pixel_model_singlechar.eval() | |
# Single Char Attribution Averaging | |
# enableSingleCharAttrAve - set to True | |
scoring = STRScore(opt=opt, converter=converter, device=device) | |
super_pixel_model = torch.nn.Sequential( | |
# super_pixler, | |
# numpy2torch_converter, | |
model, | |
scoring | |
).to(device) | |
model.eval() | |
scoring.eval() | |
super_pixel_model.eval() | |
elif modelName=="parseq": | |
model = torch.hub.load('baudm/parseq', 'parseq', pretrained=True) | |
# checkpoint = torch.hub.load_state_dict_from_url('https://github.com/baudm/parseq/releases/download/v1.0.0/parseq-bb5792a6.pt', map_location="cpu") | |
# # state_dict = {key.replace("module.", ""): value for key, value in checkpoint["state_dict"].items()} | |
# model.load_state_dict(checkpoint) | |
model = model.to(device) | |
model_obj = model | |
converter = TokenLabelConverter(opt) | |
modelCopy = copy.deepcopy(model) | |
""" evaluation """ | |
scoring_singlechar = STRScore(opt=opt, converter=converter, device=device, enableSingleCharAttrAve=True, model=modelCopy) | |
super_pixel_model_singlechar = torch.nn.Sequential( | |
# super_pixler, | |
# numpy2torch_converter, | |
modelCopy, | |
scoring_singlechar | |
).to(device) | |
modelCopy.eval() | |
scoring_singlechar.eval() | |
super_pixel_model_singlechar.eval() | |
# Single Char Attribution Averaging | |
# enableSingleCharAttrAve - set to True | |
scoring = STRScore(opt=opt, converter=converter, device=device, model=model) | |
super_pixel_model = torch.nn.Sequential( | |
# super_pixler, | |
# numpy2torch_converter, | |
model, | |
scoring | |
).to(device) | |
model.eval() | |
scoring.eval() | |
super_pixel_model.eval() | |
if opt.blackbg: | |
shapImgLs = np.zeros(shape=(1, 1, 224, 224)).astype(np.float32) | |
trainList = np.array(shapImgLs) | |
background = torch.from_numpy(trainList).to(device) | |
opt.eval = True | |
for path, subdirs, files in os.walk(demoImgDir): | |
for name in files: | |
nameNoExt = name.split('.')[0] | |
labels = nameNoExt.split("_")[-1] | |
fullfilename = os.path.join(demoImgDir, name) # Value | |
pilImg = Image.open(fullfilename) | |
pilImg = pilImg.resize((opt.imgW, opt.imgH)) | |
# fullfilename: /data/goo/strattr/attributionData/trba/CUTE80/66_featablt.pkl | |
### Single char averaging | |
if modelName == 'vitstr': | |
orig_img_tensors = transforms.ToTensor()(pilImg) | |
orig_img_tensors = torch.mean(orig_img_tensors, dim=0).unsqueeze(0).unsqueeze(0) | |
image_tensors = ((torch.clone(orig_img_tensors) + 1.0) / 2.0) * 255.0 | |
imgDataDict = {} | |
img_numpy = image_tensors.cpu().detach().numpy()[0] ### Need to set batch size to 1 only | |
if img_numpy.shape[0] == 1: | |
img_numpy = gray2rgb(img_numpy[0]) | |
# print("img_numpy shape: ", img_numpy.shape) # (32,100,3) | |
segmOutput = segmentation_fn(img_numpy) | |
# print("orig_img_tensors shape: ", orig_img_tensors.shape) # (3, 224, 224) | |
# print("orig_img_tensors max: ", orig_img_tensors.max()) # 0.6824 (1) | |
# print("orig_img_tensors min: ", orig_img_tensors.min()) # 0.0235 (0) | |
# sys.exit() | |
results_dict = {} | |
aveAttr = [] | |
aveAttr_charContrib = [] | |
# segmData, labels = segAndLabels[0] | |
target = converter.encode([labels]) | |
# labels: RONALDO | |
segmDataNP = segmOutput | |
segmTensor = torch.from_numpy(segmDataNP).unsqueeze(0).unsqueeze(0) | |
# print("segmTensor min: ", segmTensor.min()) # 0 starting segmentation | |
segmTensor = segmTensor.to(device) | |
# print("segmTensor shape: ", segmTensor.shape) | |
# img1 = np.asarray(imgPIL.convert('L')) | |
# sys.exit() | |
# img1 = img1 / 255.0 | |
# img1 = torch.from_numpy(img1).unsqueeze(0).unsqueeze(0).type(torch.FloatTensor).to(device) | |
img1 = orig_img_tensors.to(device) | |
img1.requires_grad = True | |
bgImg = torch.zeros(img1.shape).to(device) | |
input = img1 | |
origImgNP = torch.clone(orig_img_tensors).detach().cpu().numpy()[0][0] # (1, 1, 224, 224) | |
origImgNP = gray2rgb(origImgNP) | |
charOffset = 1 | |
# preds = model(img1, seqlen=converter.batch_max_length) | |
### Local explanations only | |
collectedAttributions = [] | |
for charIdx in range(0, len(labels)): | |
scoring_singlechar.setSingleCharOutput(charIdx + charOffset) | |
gtClassNum = target[0][charIdx + charOffset] | |
### Shapley Value Sampling | |
svs = ShapleyValueSampling(super_pixel_model_singlechar) | |
# attr = svs.attribute(input, target=0, n_samples=200) ### Individual pixels, too long to calculate | |
attributions = svs.attribute(input, target=gtClassNum, feature_mask=segmTensor) | |
collectedAttributions.append(attributions) | |
aveAttributions = torch.mean(torch.cat(collectedAttributions,dim=0), dim=0).unsqueeze(0) | |
if not torch.isnan(aveAttributions).any(): | |
rankedAttr = rankedAttributionsBySegm(aveAttributions, segmDataNP) | |
rankedAttr = rankedAttr.detach().cpu().numpy()[0][0] | |
rankedAttr = gray2rgb(rankedAttr) | |
mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map', cmap='RdYlGn') | |
mplotfig.savefig(outputDir + '{}_shapley_l.png'.format(nameNoExt)) | |
mplotfig.clear() | |
plt.close(mplotfig) | |
### Shapley Value Sampling | |
svs = ShapleyValueSampling(super_pixel_model) | |
# attr = svs.attribute(input, target=0, n_samples=200) ### Individual pixels, too long to calculate | |
attributions = svs.attribute(input, target=0, feature_mask=segmTensor) | |
if not torch.isnan(attributions).any(): | |
collectedAttributions.append(attributions) | |
rankedAttr = rankedAttributionsBySegm(attributions, segmDataNP) | |
rankedAttr = rankedAttr.detach().cpu().numpy()[0][0] | |
rankedAttr = gray2rgb(rankedAttr) | |
mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map', cmap='RdYlGn') | |
mplotfig.savefig(outputDir + '{}_shapley.png'.format(nameNoExt)) | |
mplotfig.clear() | |
plt.close(mplotfig) | |
### Global + Local context | |
aveAttributions = torch.mean(torch.cat(collectedAttributions,dim=0), dim=0).unsqueeze(0) | |
if not torch.isnan(aveAttributions).any(): | |
rankedAttr = rankedAttributionsBySegm(aveAttributions, segmDataNP) | |
rankedAttr = rankedAttr.detach().cpu().numpy()[0][0] | |
rankedAttr = gray2rgb(rankedAttr) | |
mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map', cmap='RdYlGn') | |
mplotfig.savefig(outputDir + '{}_shapley_gl.png'.format(nameNoExt)) | |
mplotfig.clear() | |
plt.close(mplotfig) | |
return | |
elif modelName == 'parseq': | |
orig_img_tensors = transforms.ToTensor()(pilImg).unsqueeze(0) | |
img1 = orig_img_tensors.to(device) | |
# image_tensors = ((torch.clone(orig_img_tensors) + 1.0) / 2.0) * 255.0 | |
image_tensors = torch.mean(orig_img_tensors, dim=1).unsqueeze(0).unsqueeze(0) | |
imgDataDict = {} | |
img_numpy = image_tensors.cpu().detach().numpy()[0] ### Need to set batch size to 1 only | |
if img_numpy.shape[0] == 1: | |
img_numpy = gray2rgb(img_numpy[0]) | |
# print("img_numpy shape: ", img_numpy.shape) # (1, 32, 128, 3) | |
segmOutput = segmentation_fn(img_numpy[0]) | |
results_dict = {} | |
aveAttr = [] | |
aveAttr_charContrib = [] | |
target = converter.encode([labels]) | |
# labels: RONALDO | |
segmDataNP = segmOutput | |
img1.requires_grad = True | |
bgImg = torch.zeros(img1.shape).to(device) | |
# preds = model(img1, seqlen=converter.batch_max_length) | |
input = img1 | |
origImgNP = torch.clone(orig_img_tensors).detach().cpu().numpy()[0][0] # (1, 1, 224, 224) | |
origImgNP = gray2rgb(origImgNP) | |
charOffset = 0 | |
img1 = transforms.Normalize(0.5, 0.5)(img1) # Between -1 to 1 | |
target = converter.encode([labels]) | |
### Local explanations only | |
collectedAttributions = [] | |
for charIdx in range(0, len(labels)): | |
scoring_singlechar.setSingleCharOutput(charIdx + charOffset) | |
gtClassNum = target[0][charIdx + charOffset] | |
gs = GradientShap(super_pixel_model_singlechar) | |
baseline_dist = torch.zeros((1, 3, opt.imgH, opt.imgW)) | |
baseline_dist = baseline_dist.to(device) | |
attributions = gs.attribute(input, baselines=baseline_dist, target=0) | |
collectedAttributions.append(attributions) | |
aveAttributions = torch.mean(torch.cat(collectedAttributions,dim=0), dim=0).unsqueeze(0) | |
if not torch.isnan(aveAttributions).any(): | |
rankedAttr = rankedAttributionsBySegm(aveAttributions, segmDataNP) | |
rankedAttr = rankedAttr.detach().cpu().numpy()[0][0] | |
rankedAttr = gray2rgb(rankedAttr) | |
mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map', cmap='RdYlGn') | |
mplotfig.savefig(outputDir + '{}_shapley_l.png'.format(nameNoExt)) | |
mplotfig.clear() | |
plt.close(mplotfig) | |
### Local Sampling | |
gs = GradientShap(super_pixel_model) | |
baseline_dist = torch.zeros((1, 3, opt.imgH, opt.imgW)) | |
baseline_dist = baseline_dist.to(device) | |
attributions = gs.attribute(input, baselines=baseline_dist, target=0) | |
if not torch.isnan(attributions).any(): | |
collectedAttributions.append(attributions) | |
rankedAttr = rankedAttributionsBySegm(attributions, segmDataNP) | |
rankedAttr = rankedAttr.detach().cpu().numpy()[0][0] | |
rankedAttr = gray2rgb(rankedAttr) | |
mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map', cmap='RdYlGn') | |
mplotfig.savefig(outputDir + '{}_shapley.png'.format(nameNoExt)) | |
mplotfig.clear() | |
plt.close(mplotfig) | |
### Global + Local context | |
aveAttributions = torch.mean(torch.cat(collectedAttributions,dim=0), dim=0).unsqueeze(0) | |
if not torch.isnan(aveAttributions).any(): | |
rankedAttr = rankedAttributionsBySegm(aveAttributions, segmDataNP) | |
rankedAttr = rankedAttr.detach().cpu().numpy()[0][0] | |
rankedAttr = gray2rgb(rankedAttr) | |
mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map', cmap='RdYlGn') | |
mplotfig.savefig(outputDir + '{}_shapley_gl.png'.format(nameNoExt)) | |
mplotfig.clear() | |
plt.close(mplotfig) | |
continue | |
if __name__ == '__main__': | |
# deleteInf() | |
opt = get_args(is_train=False) | |
""" vocab / character number configuration """ | |
if opt.sensitive: | |
opt.character = string.printable[:-6] # same with ASTER setting (use 94 char). | |
cudnn.benchmark = True | |
cudnn.deterministic = True | |
# opt.num_gpu = torch.cuda.device_count() | |
# combineBestDataXAI(opt) | |
# acquire_average_auc(opt) | |
# acquireSingleCharAttrAve(opt) | |
modelName = "parseq" | |
opt.modelName = modelName | |
opt.eval_data = "datasets/data_lmdb_release/evaluation" | |
if modelName=="vitstr": | |
opt.benchmark_all_eval = True | |
opt.Transformation = "None" | |
opt.FeatureExtraction = "None" | |
opt.SequenceModeling = "None" | |
opt.Prediction = "None" | |
opt.Transformer = True | |
opt.sensitive = True | |
opt.imgH = 224 | |
opt.imgW = 224 | |
opt.data_filtering_off = True | |
opt.TransformerModel= "vitstr_base_patch16_224" | |
opt.saved_model = "pretrained/vitstr_base_patch16_224_aug.pth" | |
opt.batch_size = 1 | |
opt.workers = 0 | |
opt.scorer = "mean" | |
opt.blackbg = True | |
elif modelName=="parseq": | |
opt.benchmark_all_eval = True | |
opt.Transformation = "None" | |
opt.FeatureExtraction = "None" | |
opt.SequenceModeling = "None" | |
opt.Prediction = "None" | |
opt.Transformer = True | |
opt.sensitive = True | |
opt.imgH = 32 | |
opt.imgW = 128 | |
opt.data_filtering_off = True | |
opt.batch_size = 1 | |
opt.workers = 0 | |
opt.scorer = "mean" | |
opt.blackbg = True | |
sampleDemo(opt, modelName) | |