strexp / captum /_utils /common.py
markytools's picture
added strexp
d61b9c7
#!/usr/bin/env python3
import typing
from enum import Enum
from functools import reduce
from inspect import signature
from typing import Any, Callable, cast, Dict, List, overload, Tuple, Union
import numpy as np
import torch
from captum._utils.typing import (
BaselineType,
Literal,
TargetType,
TensorOrTupleOfTensorsGeneric,
TupleOrTensorOrBoolGeneric,
)
from torch import device, Tensor
from torch.nn import Module
class ExpansionTypes(Enum):
repeat = 1
repeat_interleave = 2
def safe_div(
numerator: Tensor,
denom: Union[Tensor, int, float],
default_denom: Union[Tensor, int, float] = 1.0,
) -> Tensor:
r"""
A simple utility function to perform `numerator / denom`
if the statement is undefined => result will be `numerator / default_denorm`
"""
if isinstance(denom, (int, float)):
return numerator / (denom if denom != 0 else default_denom)
# convert default_denom to tensor if it is float
if not torch.is_tensor(default_denom):
default_denom = torch.tensor(
default_denom, dtype=denom.dtype, device=denom.device
)
return numerator / torch.where(denom != 0, denom, default_denom)
@typing.overload
def _is_tuple(inputs: Tensor) -> Literal[False]:
...
@typing.overload
def _is_tuple(inputs: Tuple[Tensor, ...]) -> Literal[True]:
...
def _is_tuple(inputs: Union[Tensor, Tuple[Tensor, ...]]) -> bool:
return isinstance(inputs, tuple)
def _validate_target(num_samples: int, target: TargetType) -> None:
if isinstance(target, list) or (
isinstance(target, torch.Tensor) and torch.numel(target) > 1
):
assert num_samples == len(target), (
"The number of samples provied in the"
"input {} does not match with the number of targets. {}".format(
num_samples, len(target)
)
)
def _validate_input(
inputs: Tuple[Tensor, ...],
baselines: Tuple[Union[Tensor, int, float], ...],
draw_baseline_from_distrib: bool = False,
) -> None:
assert len(inputs) == len(baselines), (
"Input and baseline must have the same "
"dimensions, baseline has {} features whereas input has {}.".format(
len(baselines), len(inputs)
)
)
for input, baseline in zip(inputs, baselines):
if draw_baseline_from_distrib:
assert (
isinstance(baseline, (int, float))
or input.shape[1:] == baseline.shape[1:]
), (
"The samples in input and baseline batches must have"
" the same shape or the baseline corresponding to the"
" input tensor must be a scalar."
" Found baseline: {} and input: {} ".format(baseline, input)
)
else:
assert (
isinstance(baseline, (int, float))
or input.shape == baseline.shape
or baseline.shape[0] == 1
), (
"Baseline can be provided as a tensor for just one input and"
" broadcasted to the batch or input and baseline must have the"
" same shape or the baseline corresponding to each input tensor"
" must be a scalar. Found baseline: {} and input: {}".format(
baseline, input
)
)
def _zeros(inputs: Tuple[Tensor, ...]) -> Tuple[int, ...]:
r"""
Takes a tuple of tensors as input and returns a tuple that has the same
length as `inputs` with each element as the integer 0.
"""
return tuple(0 if input.dtype is not torch.bool else False for input in inputs)
def _format_baseline(
baselines: BaselineType, inputs: Tuple[Tensor, ...]
) -> Tuple[Union[Tensor, int, float], ...]:
if baselines is None:
return _zeros(inputs)
if not isinstance(baselines, tuple):
baselines = (baselines,)
for baseline in baselines:
assert isinstance(
baseline, (torch.Tensor, int, float)
), "baseline input argument must be either a torch.Tensor or a number \
however {} detected".format(
type(baseline)
)
return baselines
@overload
def _format_tensor_into_tuples(inputs: None) -> None:
...
@overload
def _format_tensor_into_tuples(
inputs: Union[Tensor, Tuple[Tensor, ...]]
) -> Tuple[Tensor, ...]:
...
def _format_tensor_into_tuples(
inputs: Union[None, Tensor, Tuple[Tensor, ...]]
) -> Union[None, Tuple[Tensor, ...]]:
if inputs is None:
return None
if not isinstance(inputs, tuple):
assert isinstance(
inputs, torch.Tensor
), "`inputs` must have type " "torch.Tensor but {} found: ".format(type(inputs))
inputs = (inputs,)
return inputs
def _format_inputs(inputs: Any, unpack_inputs: bool = True) -> Any:
return (
inputs
if (isinstance(inputs, tuple) or isinstance(inputs, list)) and unpack_inputs
else (inputs,)
)
def _format_float_or_tensor_into_tuples(
inputs: Union[float, Tensor, Tuple[Union[float, Tensor], ...]]
) -> Tuple[Union[float, Tensor], ...]:
if not isinstance(inputs, tuple):
assert isinstance(
inputs, (torch.Tensor, float)
), "`inputs` must have type float or torch.Tensor but {} found: ".format(
type(inputs)
)
inputs = (inputs,)
return inputs
@overload
def _format_additional_forward_args(additional_forward_args: None) -> None:
...
@overload
def _format_additional_forward_args(
additional_forward_args: Union[Tensor, Tuple]
) -> Tuple:
...
@overload
def _format_additional_forward_args(additional_forward_args: Any) -> Union[None, Tuple]:
...
def _format_additional_forward_args(additional_forward_args: Any) -> Union[None, Tuple]:
if additional_forward_args is not None and not isinstance(
additional_forward_args, tuple
):
additional_forward_args = (additional_forward_args,)
return additional_forward_args
def _expand_additional_forward_args(
additional_forward_args: Any,
n_steps: int,
expansion_type: ExpansionTypes = ExpansionTypes.repeat,
) -> Union[None, Tuple]:
def _expand_tensor_forward_arg(
additional_forward_arg: Tensor,
n_steps: int,
expansion_type: ExpansionTypes = ExpansionTypes.repeat,
) -> Tensor:
if len(additional_forward_arg.size()) == 0:
return additional_forward_arg
if expansion_type == ExpansionTypes.repeat:
return torch.cat([additional_forward_arg] * n_steps, dim=0)
elif expansion_type == ExpansionTypes.repeat_interleave:
return additional_forward_arg.repeat_interleave(n_steps, dim=0)
else:
raise NotImplementedError(
"Currently only `repeat` and `repeat_interleave`"
" expansion_types are supported"
)
if additional_forward_args is None:
return None
return tuple(
_expand_tensor_forward_arg(additional_forward_arg, n_steps, expansion_type)
if isinstance(additional_forward_arg, torch.Tensor)
else additional_forward_arg
for additional_forward_arg in additional_forward_args
)
def _expand_target(
target: TargetType,
n_steps: int,
expansion_type: ExpansionTypes = ExpansionTypes.repeat,
) -> TargetType:
if isinstance(target, list):
if expansion_type == ExpansionTypes.repeat:
return target * n_steps
elif expansion_type == ExpansionTypes.repeat_interleave:
expanded_target = []
for i in target:
expanded_target.extend([i] * n_steps)
return cast(Union[List[Tuple[int, ...]], List[int]], expanded_target)
else:
raise NotImplementedError(
"Currently only `repeat` and `repeat_interleave`"
" expansion_types are supported"
)
elif isinstance(target, torch.Tensor) and torch.numel(target) > 1:
if expansion_type == ExpansionTypes.repeat:
return torch.cat([target] * n_steps, dim=0)
elif expansion_type == ExpansionTypes.repeat_interleave:
return target.repeat_interleave(n_steps, dim=0)
else:
raise NotImplementedError(
"Currently only `repeat` and `repeat_interleave`"
" expansion_types are supported"
)
return target
def _expand_feature_mask(
feature_mask: Union[Tensor, Tuple[Tensor, ...]], n_samples: int
):
is_feature_mask_tuple = _is_tuple(feature_mask)
feature_mask = _format_tensor_into_tuples(feature_mask)
feature_mask_new = tuple(
feature_mask_elem.repeat_interleave(n_samples, dim=0)
if feature_mask_elem.size(0) > 1
else feature_mask_elem
for feature_mask_elem in feature_mask
)
return _format_output(is_feature_mask_tuple, feature_mask_new)
def _expand_and_update_baselines(
inputs: Tuple[Tensor, ...],
n_samples: int,
kwargs: dict,
draw_baseline_from_distrib: bool = False,
):
def get_random_baseline_indices(bsz, baseline):
num_ref_samples = baseline.shape[0]
return np.random.choice(num_ref_samples, n_samples * bsz).tolist()
# expand baselines to match the sizes of input
if "baselines" not in kwargs:
return
baselines = kwargs["baselines"]
baselines = _format_baseline(baselines, inputs)
_validate_input(
inputs, baselines, draw_baseline_from_distrib=draw_baseline_from_distrib
)
if draw_baseline_from_distrib:
bsz = inputs[0].shape[0]
baselines = tuple(
baseline[get_random_baseline_indices(bsz, baseline)]
if isinstance(baseline, torch.Tensor)
else baseline
for baseline in baselines
)
else:
baselines = tuple(
baseline.repeat_interleave(n_samples, dim=0)
if isinstance(baseline, torch.Tensor)
and baseline.shape[0] == input.shape[0]
and baseline.shape[0] > 1
else baseline
for input, baseline in zip(inputs, baselines)
)
# update kwargs with expanded baseline
kwargs["baselines"] = baselines
def _expand_and_update_additional_forward_args(n_samples: int, kwargs: dict):
if "additional_forward_args" not in kwargs:
return
additional_forward_args = kwargs["additional_forward_args"]
additional_forward_args = _format_additional_forward_args(additional_forward_args)
if additional_forward_args is None:
return
additional_forward_args = _expand_additional_forward_args(
additional_forward_args,
n_samples,
expansion_type=ExpansionTypes.repeat_interleave,
)
# update kwargs with expanded baseline
kwargs["additional_forward_args"] = additional_forward_args
def _expand_and_update_target(n_samples: int, kwargs: dict):
if "target" not in kwargs:
return
target = kwargs["target"]
target = _expand_target(
target, n_samples, expansion_type=ExpansionTypes.repeat_interleave
)
# update kwargs with expanded baseline
kwargs["target"] = target
def _expand_and_update_feature_mask(n_samples: int, kwargs: dict):
if "feature_mask" not in kwargs:
return
feature_mask = kwargs["feature_mask"]
if feature_mask is None:
return
feature_mask = _expand_feature_mask(feature_mask, n_samples)
kwargs["feature_mask"] = feature_mask
@typing.overload
def _format_output(
is_inputs_tuple: Literal[True], output: Tuple[Tensor, ...]
) -> Tuple[Tensor, ...]:
...
@typing.overload
def _format_output(
is_inputs_tuple: Literal[False], output: Tuple[Tensor, ...]
) -> Tensor:
...
@typing.overload
def _format_output(
is_inputs_tuple: bool, output: Tuple[Tensor, ...]
) -> Union[Tensor, Tuple[Tensor, ...]]:
...
def _format_output(
is_inputs_tuple: bool, output: Tuple[Tensor, ...]
) -> Union[Tensor, Tuple[Tensor, ...]]:
r"""
In case input is a tensor and the output is returned in form of a
tuple we take the first element of the output's tuple to match the
same shape signatues of the inputs
"""
assert isinstance(output, tuple), "Output must be in shape of a tuple"
assert is_inputs_tuple or len(output) == 1, (
"The input is a single tensor however the output isn't."
"The number of output tensors is: {}".format(len(output))
)
return output if is_inputs_tuple else output[0]
@typing.overload
def _format_outputs(
is_multiple_inputs: Literal[False], outputs: List[Tuple[Tensor, ...]]
) -> Union[Tensor, Tuple[Tensor, ...]]:
...
@typing.overload
def _format_outputs(
is_multiple_inputs: Literal[True], outputs: List[Tuple[Tensor, ...]]
) -> List[Union[Tensor, Tuple[Tensor, ...]]]:
...
@typing.overload
def _format_outputs(
is_multiple_inputs: bool, outputs: List[Tuple[Tensor, ...]]
) -> Union[Tensor, Tuple[Tensor, ...], List[Union[Tensor, Tuple[Tensor, ...]]]]:
...
def _format_outputs(
is_multiple_inputs: bool, outputs: List[Tuple[Tensor, ...]]
) -> Union[Tensor, Tuple[Tensor, ...], List[Union[Tensor, Tuple[Tensor, ...]]]]:
assert isinstance(outputs, list), "Outputs must be a list"
assert is_multiple_inputs or len(outputs) == 1, (
"outputs should contain multiple inputs or have a single output"
f"however the number of outputs is: {len(outputs)}"
)
return (
[_format_output(len(output) > 1, output) for output in outputs]
if is_multiple_inputs
else _format_output(len(outputs[0]) > 1, outputs[0])
)
def _run_forward(
forward_func: Callable,
inputs: Any,
target: TargetType = None,
additional_forward_args: Any = None,
) -> Tensor:
forward_func_args = signature(forward_func).parameters
if len(forward_func_args) == 0:
output = forward_func()
return output if target is None else _select_targets(output, target)
# make everything a tuple so that it is easy to unpack without
# using if-statements
inputs = _format_inputs(inputs)
additional_forward_args = _format_additional_forward_args(additional_forward_args)
output = forward_func(
*(*inputs, *additional_forward_args)
if additional_forward_args is not None
else inputs
)
return _select_targets(output, target)
def _select_targets(output: Tensor, target: TargetType) -> Tensor:
if target is None:
return output
num_examples = output.shape[0]
dims = len(output.shape)
device = output.device
if isinstance(target, (int, tuple)):
return _verify_select_column(output, target)
elif isinstance(target, torch.Tensor):
if torch.numel(target) == 1 and isinstance(target.item(), int):
return _verify_select_column(output, cast(int, target.item()))
elif len(target.shape) == 1 and torch.numel(target) == num_examples:
assert dims == 2, "Output must be 2D to select tensor of targets."
return torch.gather(output, 1, target.reshape(len(output), 1))
else:
raise AssertionError(
"Tensor target dimension %r is not valid. %r"
% (target.shape, output.shape)
)
elif isinstance(target, list):
assert len(target) == num_examples, "Target list length does not match output!"
if isinstance(target[0], int):
assert dims == 2, "Output must be 2D to select tensor of targets."
return torch.gather(
output, 1, torch.tensor(target, device=device).reshape(len(output), 1)
)
elif isinstance(target[0], tuple):
return torch.stack(
[
output[(i,) + cast(Tuple, targ_elem)]
for i, targ_elem in enumerate(target)
]
)
else:
raise AssertionError("Target element type in list is not valid.")
else:
raise AssertionError("Target type %r is not valid." % target)
def _contains_slice(target: Union[int, Tuple[Union[int, slice], ...]]) -> bool:
if isinstance(target, tuple):
for index in target:
if isinstance(index, slice):
return True
return False
return isinstance(target, slice)
def _verify_select_column(
output: Tensor, target: Union[int, Tuple[Union[int, slice], ...]]
) -> Tensor:
target = (target,) if isinstance(target, int) else target
assert (
len(target) <= len(output.shape) - 1
), "Cannot choose target column with output shape %r." % (output.shape,)
return output[(slice(None), *target)]
def _verify_select_neuron(
layer_output: Tuple[Tensor, ...],
selector: Union[int, Tuple[Union[int, slice], ...], Callable],
) -> Tensor:
if callable(selector):
return selector(layer_output if len(layer_output) > 1 else layer_output[0])
assert len(layer_output) == 1, (
"Cannot select neuron index from layer with multiple tensors,"
"consider providing a neuron selector function instead."
)
selected_neurons = _verify_select_column(layer_output[0], selector)
if _contains_slice(selector):
return selected_neurons.reshape(selected_neurons.shape[0], -1).sum(1)
return selected_neurons
def _extract_device(
module: Module,
hook_inputs: Union[None, Tensor, Tuple[Tensor, ...]],
hook_outputs: Union[None, Tensor, Tuple[Tensor, ...]],
) -> device:
params = list(module.parameters())
if (
(hook_inputs is None or len(hook_inputs) == 0)
and (hook_outputs is None or len(hook_outputs) == 0)
and len(params) == 0
):
raise RuntimeError(
"""Unable to extract device information for the module
{}. Both inputs and outputs to the forward hook and
`module.parameters()` are empty.
The reason that the inputs to the forward hook are empty
could be due to the fact that the arguments to that
module {} are all named and are passed as named
variables to its forward function.
""".format(
module, module
)
)
if hook_inputs is not None and len(hook_inputs) > 0:
return hook_inputs[0].device
if hook_outputs is not None and len(hook_outputs) > 0:
return hook_outputs[0].device
return params[0].device
def _reduce_list(
val_list: List[TupleOrTensorOrBoolGeneric],
red_func: Callable[[List], Any] = torch.cat,
) -> TupleOrTensorOrBoolGeneric:
"""
Applies reduction function to given list. If each element in the list is
a Tensor, applies reduction function to all elements of the list, and returns
the output Tensor / value. If each element is a boolean, apply any method (or).
If each element is a tuple, applies reduction
function to corresponding elements of each tuple in the list, and returns
tuple of reduction function outputs with length matching the length of tuple
val_list[0]. It is assumed that all tuples in the list have the same length
and red_func can be applied to all elements in each corresponding position.
"""
assert len(val_list) > 0, "Cannot reduce empty list!"
if isinstance(val_list[0], torch.Tensor):
first_device = val_list[0].device
return red_func([elem.to(first_device) for elem in val_list])
elif isinstance(val_list[0], bool):
return any(val_list)
elif isinstance(val_list[0], tuple):
final_out = []
for i in range(len(val_list[0])):
final_out.append(
_reduce_list([val_elem[i] for val_elem in val_list], red_func)
)
else:
raise AssertionError(
"Elements to be reduced can only be"
"either Tensors or tuples containing Tensors."
)
return tuple(final_out)
def _sort_key_list(
keys: List[device], device_ids: Union[None, List[int]] = None
) -> List[device]:
"""
Sorts list of torch devices (keys) by given index list, device_ids. If keys
contains only one device, then the list is returned unchanged. If keys
contains a device for which the id is not contained in device_ids, then
an error is returned. This method is used to identify the order of DataParallel
batched devices, given the device ID ordering.
"""
if len(keys) == 1:
return keys
id_dict: Dict[int, device] = {}
assert device_ids is not None, "Device IDs must be provided with multiple devices."
for key in keys:
if key.index in id_dict:
raise AssertionError("Duplicate CUDA Device ID identified in device list.")
id_dict[key.index] = key
out_list = [
id_dict[device_id]
for device_id in filter(lambda device_id: device_id in id_dict, device_ids)
]
assert len(out_list) == len(keys), "Given Device ID List does not match"
"devices with computed tensors."
return out_list
def _flatten_tensor_or_tuple(inp: TensorOrTupleOfTensorsGeneric) -> Tensor:
if isinstance(inp, Tensor):
return inp.flatten()
return torch.cat([single_inp.flatten() for single_inp in inp])
def _get_module_from_name(model: Module, layer_name: str) -> Any:
r"""
Returns the module (layer) object, given its (string) name
in the model.
Args:
name (str): Module or nested modules name string in self.model
Returns:
The module (layer) in self.model.
"""
return reduce(getattr, layer_name.split("."), model)
def _register_backward_hook(
module: Module, hook: Callable, attr_obj: Any
) -> torch.utils.hooks.RemovableHandle:
# Special case for supporting output attributions for neuron methods
# This can be removed after deprecation of neuron output attributions
# for NeuronDeepLift, NeuronDeconvolution, and NeuronGuidedBackprop
# in v0.6.0
if (
hasattr(attr_obj, "skip_new_hook_layer")
and attr_obj.skip_new_hook_layer == module
):
return module.register_backward_hook(hook)
if torch.__version__ >= "1.9":
# Only supported for torch >= 1.9
return module.register_full_backward_hook(hook)
else:
# Fallback for previous versions of PyTorch
return module.register_backward_hook(hook)