Spaces:
Sleeping
Sleeping
File size: 6,033 Bytes
8876cd2 3c78fe7 8af6ce4 8876cd2 1bb20ca 8876cd2 a506979 62e17b3 15350d5 781b976 e978718 eba369c b832f73 1bb20ca 4a6e928 8876cd2 3c78fe7 94096e8 3c78fe7 15350d5 3c78fe7 8bf2b88 3c78fe7 8af6ce4 3c78fe7 79b1800 8af6ce4 79b1800 8af6ce4 79b1800 8af6ce4 79b1800 8af6ce4 3c78fe7 b832f73 3c78fe7 8876cd2 197ffb2 8876cd2 197ffb2 8876cd2 197ffb2 8876cd2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 |
import gradio as gr
import joblib
import pandas as pd
import numpy as np
from sklearn.preprocessing import LabelEncoder, StandardScaler, OneHotEncoder
from sklearn.impute import KNNImputer
from sklearn.decomposition import PCA
# Load your saved model
# model = joblib.load("ann_model.joblib")
# # Define the prediction function
def predict(age, workclass, education, marital_status, occupation, relationship, race, gender, capital_gain, capital_loss, hours_per_week, native_country):
features = [age, workclass, education, marital_status, occupation, relationship, race, gender, capital_gain, capital_loss, hours_per_week, native_country]
columns = [
"age", "workclass", "educational-num", "marital-status", "occupation",
"relationship", "race", "gender", "capital-gain", "capital-loss",
"hours-per-week", "native-country"]
df = pd.DataFrame(index=features, columns=columns)
fixed_features = cleaning_features(df)
# prediction = model.predict(features)
# prediction = 1
# return "Income >50K" if prediction == 1 else "Income <=50K"
return print(fixed_features)
def cleaning_features(data):
le = LabelEncoder()
scaler = StandardScaler()
encoder = OneHotEncoder(sparse=False)
numeric_cols = ['age', 'educational-num', 'hours-per-week']
columns_to_encode = ['race','marital-status','relationship']
# 1. Scale numerical features
data[numeric_cols] = scaler.fit_transform(data[numeric_cols])
# 2. Label encode gender and income
data['gender'] = le.fit_transform(data['gender'])
data['educational-num'] = le.fit_transform(data['educational-num'])
# 3. One-hot encode race
for N in columns_to_encode:
race_encoded = encoder.fit_transform(data[[N]])
race_encoded_cols = encoder.get_feature_names_out([N])
race_encoded_df = pd.DataFrame(race_encoded, columns=race_encoded_cols, index=data.index)
# Combine the encoded data with original dataframe
data = pd.concat([data.drop(N, axis=1), race_encoded_df], axis=1)
# Binarize native country
data['native-country'] = data['native-country'].apply(lambda x: x == 'United-States')
data['native-country'] = data['native-country'].astype(int)
data = pca(data)
return data
# def pca(data):
# encoder = OneHotEncoder(sparse_output=False)
# one_hot_encoded = encoder.fit_transform(data[['workclass', 'occupation']])
# encoded_columns_df = pd.DataFrame(one_hot_encoded, columns=encoder.get_feature_names_out())
# pca_net = PCA(n_components=10)
# pca_result_net = pca_net.fit_transform(encoded_columns_df)
# pca_columns = [f'pca_component_{i+1}' for i in range(10)]
# pca_df = pd.DataFrame(pca_result_net, columns=pca_columns)
# data = data.drop(columns=['workclass', 'occupation'], axis=1) #remove the original columns
# data = pd.concat([data, pca_df], axis=1)
# return data
def pca(data):
encoder = joblib.load('onehot_encoder.joblib')
pca_model = joblib.load('pca.joblib')
one_hot_encoded = encoder.transform(data[['workclass', 'occupation']])
encoded_columns_df = pd.DataFrame(one_hot_encoded, columns=encoder.get_feature_names_out())
pca_result_net = pca_model.transform(encoded_columns_df)
pca_columns = [f'pca_component_{i+1}' for i in range(pca_model.n_components_)]
pca_df = pd.DataFrame(pca_result_net, columns=pca_columns)
data = data.drop(columns=['workclass', 'occupation'], axis=1)
data = pd.concat([data, pca_df], axis=1)
return data
def hbdscan_tranform(df_transformed):
df_transformed['capital-gain'] = np.log1p(df_transformed['capital-gain'])
df_transformed['capital-loss'] = np.log1p(df_transformed['capital-loss'])
# Apply RobustScaler to all numerical features
numerical_features = ['age', 'capital-gain', 'capital-loss', 'hours-per-week']
scaler = RobustScaler()
df_transformed[numerical_features] = scaler.fit_transform(df_transformed[numerical_features])
return df_transformed
# Create the Gradio interface
interface = gr.Interface(
fn=predict,
inputs=[
gr.Slider(18, 90, step=1, label="Age"),
gr.Dropdown(
["Private", "Self-emp-not-inc", "Self-emp-inc", "Federal-gov",
"Local-gov", "State-gov", "Without-pay", "Never-worked"],
label="Workclass"
),
gr.Dropdown(
["Bachelors", "Some-college", "11th", "HS-grad", "Prof-school",
"Assoc-acdm", "Assoc-voc", "9th", "7th-8th", "12th", "Masters",
"1st-4th", "10th", "Doctorate", "5th-6th", "Preschool"],
label="Education"
),
gr.Dropdown(
["Married-civ-spouse", "Divorced", "Never-married", "Separated",
"Widowed", "Married-spouse-absent", "Married-AF-spouse"],
label="Marital Status"
),
gr.Dropdown(
["Tech-support", "Craft-repair", "Other-service", "Sales",
"Exec-managerial", "Prof-specialty", "Handlers-cleaners",
"Machine-op-inspct", "Adm-clerical", "Farming-fishing",
"Transport-moving", "Priv-house-serv", "Protective-serv",
"Armed-Forces"],
label="Occupation"
),
gr.Dropdown(
["Wife", "Husband", "Own-child", "Unmarried", "Other-relative", "Not-in-family"],
label="Relationship"
),
gr.Dropdown(
["White", "Black", "Asian-Pac-Islander", "Amer-Indian-Eskimo", "Other"],
label="Race"
),
gr.Dropdown(
["Male", "Female"],
label="Gender"
),
gr.Slider(1, 90, step=1, label="Hours Per Week"),
gr.Slider(0, 100000, step=100, label="Capital Gain"),
gr.Slider(0, 5000, step=50, label="Capital Loss"),
gr.Dropdown(
["United-States", "Other"],
label="Native Country"
)
],
outputs="text",
title="Adult Income Predictor"
)
# Launch the app
interface.launch()
|