File size: 4,400 Bytes
59a3d03 40d3817 59a3d03 8aeff3e 40d3817 8aeff3e 59a3d03 40d3817 59a3d03 40d3817 59a3d03 fae49e7 533636b 05ec195 7204d99 9c2aa41 8aeff3e dafe1b4 8aeff3e fae49e7 1341687 8aeff3e 3832b1b 8aeff3e 3832b1b 8aeff3e f24967f 8aeff3e 6268cef 9c2aa41 8aeff3e fae49e7 f24967f 8aeff3e f24967f 8aeff3e 1341687 3832b1b 8aeff3e 40d3817 2ecaff0 40d3817 8aeff3e b7d5df4 8aeff3e 40d3817 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 |
import os
import numpy as np
import pandas as pd
import streamlit as st
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification, AutoModelForCausalLM
from keybert import KeyBERT
# ─── DeepSeek Model Client ────────────────────────────────────────────────────
# Option 1: High-level helper pipeline for chat-like generation
pipe = pipeline(
"text-generation",
model="deepseek-ai/DeepSeek-R1",
trust_remote_code=True
)
# Option 2: Direct model & tokenizer instantiation (alternative)
# tokenizer_ds = AutoTokenizer.from_pretrained(
# "deepseek-ai/DeepSeek-R1",
# trust_remote_code=True
# )
# model_ds = AutoModelForCausalLM.from_pretrained(
# "deepseek-ai/DeepSeek-R1",
# trust_remote_code=True
# )
@st.cache_resource
def load_sentiment_pipeline():
model_name = "mayf/amazon_reviews_bert_ft"
tok = AutoTokenizer.from_pretrained(model_name, use_auth_token=True)
mdl = AutoModelForSequenceClassification.from_pretrained(
model_name,
use_auth_token=True
)
return pipeline(
"sentiment-analysis",
model=mdl,
tokenizer=tok,
return_all_scores=True
)
@st.cache_resource
def load_keybert_model():
return KeyBERT(model="all-MiniLM-L6-v2")
LABEL_MAP = {
"LABEL_0": "Very Negative",
"LABEL_1": "Negative",
"LABEL_2": "Neutral",
"LABEL_3": "Positive",
"LABEL_4": "Very Positive"
}
def main():
st.title("📊 Amazon Review Analyzer")
review = st.text_area("Enter your review:")
if not st.button("Analyze Review"):
return
if not review:
st.warning("Please enter a review to analyze.")
return
# Initialize progress bar
progress = st.progress(0)
# Load models
progress.text("Loading models...")
sentiment_pipeline = load_sentiment_pipeline()
kw_model = load_keybert_model()
progress.progress(20)
# Run sentiment analysis
progress.text("Analyzing sentiment...")
raw_scores = sentiment_pipeline(review)[0]
sentiment_results = {LABEL_MAP[item['label']]: float(item['score']) for item in raw_scores}
progress.progress(40)
# Extract keywords
progress.text("Extracting keywords...")
keywords = kw_model.extract_keywords(
review,
keyphrase_ngram_range=(1, 2),
stop_words="english",
top_n=3
)
progress.progress(60)
# Display scores and keywords side by side
col1, col2 = st.columns(2)
with col1:
st.subheader("Sentiment Scores")
st.json({k: round(v, 4) for k, v in sentiment_results.items()})
with col2:
st.subheader("Top 3 Keywords")
for kw, score in keywords:
st.write(f"• {kw} ({score:.4f})")
# Bar chart
progress.text("Rendering chart...")
df_scores = pd.DataFrame.from_dict(sentiment_results, orient='index', columns=['score'])
df_scores.index.name = 'Sentiment'
st.bar_chart(df_scores)
progress.progress(80)
# Highlight highest sentiment
max_label, max_score = max(sentiment_results.items(), key=lambda x: x[1])
st.markdown(f"**Highest Sentiment:** **{max_label}** ({max_score:.4f})")
# GPT-Driven Analysis & Suggestions
progress.text("Generating insights...")
prompt = f"""
You are an analytical amazon feedback expert.
Review: \"{review}\"
Sentiment Scores: {sentiment_results}
Top Keywords: {[kw for kw, _ in keywords]}
Tasks:
1. Analysis: Write a concise paragraph (3 sentences) interpreting customer sentiment by combining the scores and keywords.
2. Recommendations: Three separate paragraphs with actionable suggestions (max 30 words each).
"""
# Use the high-level pipeline for generation
chat_input = [
{"role": "system", "content": "You are a product-feedback analyst."},
{"role": "user", "content": prompt}
]
gen_output = pipe(chat_input)
gpt_reply = gen_output[0]['generated_text']
# Alternative: direct model invocation
# inputs = tokenizer_ds(prompt, return_tensors="pt")
# outputs = model_ds.generate(**inputs, max_new_tokens=200)
# gpt_reply = tokenizer_ds.decode(outputs[0], skip_special_tokens=True)
st.markdown(gpt_reply)
progress.progress(100)
progress.text("Done!")
if __name__ == "__main__":
main() |