test / FoodSeg103 /docs /tutorials /customize_models.md
mccaly's picture
Upload 2805 files
985cc7f
|
raw
history blame
6.52 kB
# Tutorial 4: Customize Models
## Customize optimizer
Assume you want to add a optimizer named as `MyOptimizer`, which has arguments `a`, `b`, and `c`.
You need to first implement the new optimizer in a file, e.g., in `mmseg/core/optimizer/my_optimizer.py`:
```python
from mmcv.runner import OPTIMIZERS
from torch.optim import Optimizer
@OPTIMIZERS.register_module
class MyOptimizer(Optimizer):
def __init__(self, a, b, c)
```
Then add this module in `mmseg/core/optimizer/__init__.py` thus the registry will
find the new module and add it:
```python
from .my_optimizer import MyOptimizer
```
Then you can use `MyOptimizer` in `optimizer` field of config files.
In the configs, the optimizers are defined by the field `optimizer` like the following:
```python
optimizer = dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001)
```
To use your own optimizer, the field can be changed as
```python
optimizer = dict(type='MyOptimizer', a=a_value, b=b_value, c=c_value)
```
We already support to use all the optimizers implemented by PyTorch, and the only modification is to change the `optimizer` field of config files.
For example, if you want to use `ADAM`, though the performance will drop a lot, the modification could be as the following.
```python
optimizer = dict(type='Adam', lr=0.0003, weight_decay=0.0001)
```
The users can directly set arguments following the [API doc](https://pytorch.org/docs/stable/optim.html?highlight=optim#module-torch.optim) of PyTorch.
## Customize optimizer constructor
Some models may have some parameter-specific settings for optimization, e.g. weight decay for BatchNoarm layers.
The users can do those fine-grained parameter tuning through customizing optimizer constructor.
```
from mmcv.utils import build_from_cfg
from mmcv.runner import OPTIMIZER_BUILDERS
from .cocktail_optimizer import CocktailOptimizer
@OPTIMIZER_BUILDERS.register_module
class CocktailOptimizerConstructor(object):
def __init__(self, optimizer_cfg, paramwise_cfg=None):
def __call__(self, model):
return my_optimizer
```
## Develop new components
There are mainly 2 types of components in MMSegmentation.
- backbone: usually stacks of convolutional network to extract feature maps, e.g., ResNet, HRNet.
- head: the component for semantic segmentation map decoding.
### Add new backbones
Here we show how to develop new components with an example of MobileNet.
1. Create a new file `mmseg/models/backbones/mobilenet.py`.
```python
import torch.nn as nn
from ..registry import BACKBONES
@BACKBONES.register_module
class MobileNet(nn.Module):
def __init__(self, arg1, arg2):
pass
def forward(self, x): # should return a tuple
pass
def init_weights(self, pretrained=None):
pass
```
2. Import the module in `mmseg/models/backbones/__init__.py`.
```python
from .mobilenet import MobileNet
```
3. Use it in your config file.
```python
model = dict(
...
backbone=dict(
type='MobileNet',
arg1=xxx,
arg2=xxx),
...
```
### Add new heads
In MMSegmentation, we provide a base [BaseDecodeHead](https://github.com/open-mmlab/mmsegmentation/blob/master/mmseg/models/decode_heads/decode_head.py) for all segmentation head.
All newly implemented decode heads should be derived from it.
Here we show how to develop a new head with the example of [PSPNet](https://arxiv.org/abs/1612.01105) as the following.
First, add a new decode head in `mmseg/models/decode_heads/psp_head.py`.
PSPNet implements a decode head for segmentation decode.
To implement a decode head, basically we need to implement three functions of the new module as the following.
```python
@HEADS.register_module()
class PSPHead(BaseDecodeHead):
def __init__(self, pool_scales=(1, 2, 3, 6), **kwargs):
super(PSPHead, self).__init__(**kwargs)
def init_weights(self):
def forward(self, inputs):
```
Next, the users need to add the module in the `mmseg/models/decode_heads/__init__.py` thus the corresponding registry could find and load them.
To config file of PSPNet is as the following
```python
norm_cfg = dict(type='SyncBN', requires_grad=True)
model = dict(
type='EncoderDecoder',
pretrained='pretrain_model/resnet50_v1c_trick-2cccc1ad.pth',
backbone=dict(
type='ResNetV1c',
depth=50,
num_stages=4,
out_indices=(0, 1, 2, 3),
dilations=(1, 1, 2, 4),
strides=(1, 2, 1, 1),
norm_cfg=norm_cfg,
norm_eval=False,
style='pytorch',
contract_dilation=True),
decode_head=dict(
type='PSPHead',
in_channels=2048,
in_index=3,
channels=512,
pool_scales=(1, 2, 3, 6),
dropout_ratio=0.1,
num_classes=19,
norm_cfg=norm_cfg,
align_corners=False,
loss_decode=dict(
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)))
```
### Add new loss
Assume you want to add a new loss as `MyLoss` for segmentation decode.
To add a new loss function, the users need implement it in `mmseg/models/losses/my_loss.py`.
The decorator `weighted_loss` enable the loss to be weighted for each element.
```python
import torch
import torch.nn as nn
from ..builder import LOSSES
from .utils import weighted_loss
@weighted_loss
def my_loss(pred, target):
assert pred.size() == target.size() and target.numel() > 0
loss = torch.abs(pred - target)
return loss
@LOSSES.register_module
class MyLoss(nn.Module):
def __init__(self, reduction='mean', loss_weight=1.0):
super(MyLoss, self).__init__()
self.reduction = reduction
self.loss_weight = loss_weight
def forward(self,
pred,
target,
weight=None,
avg_factor=None,
reduction_override=None):
assert reduction_override in (None, 'none', 'mean', 'sum')
reduction = (
reduction_override if reduction_override else self.reduction)
loss = self.loss_weight * my_loss(
pred, target, weight, reduction=reduction, avg_factor=avg_factor)
return loss
```
Then the users need to add it in the `mmseg/models/losses/__init__.py`.
```python
from .my_loss import MyLoss, my_loss
```
To use it, modify the `loss_xxx` field.
Then you need to modify the `loss_decode` field in the head.
`loss_weight` could be used to balance multiple losses.
```python
loss_decode=dict(type='MyLoss', loss_weight=1.0))
```