|
## Changelog |
|
|
|
### V0.11 (02/02/2021) |
|
|
|
**Highlights** |
|
|
|
- Support memory efficient test, add more UNet models. |
|
|
|
**Bug Fixes** |
|
|
|
- Fixed TTA resize scale ([#334](https://github.com/open-mmlab/mmsegmentation/pull/334)) |
|
- Fixed CI for pip 20.3 ([#307](https://github.com/open-mmlab/mmsegmentation/pull/307)) |
|
- Fixed ADE20k test ([#359](https://github.com/open-mmlab/mmsegmentation/pull/359)) |
|
|
|
**New Features** |
|
|
|
- Support memory efficient test ([#330](https://github.com/open-mmlab/mmsegmentation/pull/330)) |
|
- Add more UNet benchmarks ([#324](https://github.com/open-mmlab/mmsegmentation/pull/324)) |
|
- Support Lovasz Loss ([#351](https://github.com/open-mmlab/mmsegmentation/pull/351)) |
|
|
|
**Improvements** |
|
|
|
- Move train_cfg/test_cfg inside model ([#341](https://github.com/open-mmlab/mmsegmentation/pull/341)) |
|
|
|
### V0.10 (01/01/2021) |
|
|
|
**Highlights** |
|
|
|
- Support MobileNetV3, DMNet, APCNet. Add models of ResNet18V1b, ResNet18V1c, ResNet50V1b. |
|
|
|
**Bug Fixes** |
|
|
|
- Fixed CPU TTA ([#276](https://github.com/open-mmlab/mmsegmentation/pull/276)) |
|
- Fixed CI for pip 20.3 ([#307](https://github.com/open-mmlab/mmsegmentation/pull/307)) |
|
|
|
**New Features** |
|
|
|
- Add ResNet18V1b, ResNet18V1c, ResNet50V1b, ResNet101V1b models ([#316](https://github.com/open-mmlab/mmsegmentation/pull/316)) |
|
- Support MobileNetV3 ([#268](https://github.com/open-mmlab/mmsegmentation/pull/268)) |
|
- Add 4 retinal vessel segmentation benchmark ([#315](https://github.com/open-mmlab/mmsegmentation/pull/315)) |
|
- Support DMNet ([#313](https://github.com/open-mmlab/mmsegmentation/pull/313)) |
|
- Support APCNet ([#299](https://github.com/open-mmlab/mmsegmentation/pull/299)) |
|
|
|
**Improvements** |
|
|
|
- Refactor Documentation page ([#311](https://github.com/open-mmlab/mmsegmentation/pull/311)) |
|
- Support resize data augmentation according to original image size ([#291](https://github.com/open-mmlab/mmsegmentation/pull/291)) |
|
|
|
### V0.9 (30/11/2020) |
|
|
|
**Highlights** |
|
|
|
- Support 4 medical dataset, UNet and CGNet. |
|
|
|
**New Features** |
|
|
|
- Support RandomRotate transform ([#215](https://github.com/open-mmlab/mmsegmentation/pull/215), [#260](https://github.com/open-mmlab/mmsegmentation/pull/260)) |
|
- Support RGB2Gray transform ([#227](https://github.com/open-mmlab/mmsegmentation/pull/227)) |
|
- Support Rerange transform ([#228](https://github.com/open-mmlab/mmsegmentation/pull/228)) |
|
- Support ignore_index for BCE loss ([#210](https://github.com/open-mmlab/mmsegmentation/pull/210)) |
|
- Add modelzoo statistics ([#263](https://github.com/open-mmlab/mmsegmentation/pull/263)) |
|
- Support Dice evaluation metric ([#225](https://github.com/open-mmlab/mmsegmentation/pull/225)) |
|
- Support Adjust Gamma transform ([#232](https://github.com/open-mmlab/mmsegmentation/pull/232)) |
|
- Support CLAHE transform ([#229](https://github.com/open-mmlab/mmsegmentation/pull/229)) |
|
|
|
**Bug Fixes** |
|
|
|
- Fixed detail API link ([#267](https://github.com/open-mmlab/mmsegmentation/pull/267)) |
|
|
|
### V0.8 (03/11/2020) |
|
|
|
**Highlights** |
|
|
|
- Support 4 medical dataset, UNet and CGNet. |
|
|
|
**New Features** |
|
|
|
- Support customize runner ([#118](https://github.com/open-mmlab/mmsegmentation/pull/118)) |
|
- Support UNet ([#161](https://github.com/open-mmlab/mmsegmentation/pull/162)) |
|
- Support CHASE_DB1, DRIVE, STARE, HRD ([#203](https://github.com/open-mmlab/mmsegmentation/pull/203)) |
|
- Support CGNet ([#223](https://github.com/open-mmlab/mmsegmentation/pull/223)) |
|
|
|
### V0.7 (07/10/2020) |
|
|
|
**Highlights** |
|
|
|
- Support Pascal Context dataset and customizing class dataset. |
|
|
|
**Bug Fixes** |
|
|
|
- Fixed CPU inference ([#153](https://github.com/open-mmlab/mmsegmentation/pull/153)) |
|
|
|
**New Features** |
|
|
|
- Add DeepLab OS16 models ([#154](https://github.com/open-mmlab/mmsegmentation/pull/154)) |
|
- Support Pascal Context dataset ([#133](https://github.com/open-mmlab/mmsegmentation/pull/133)) |
|
- Support customizing dataset classes ([#71](https://github.com/open-mmlab/mmsegmentation/pull/71)) |
|
- Support customizing dataset palette ([#157](https://github.com/open-mmlab/mmsegmentation/pull/157)) |
|
|
|
**Improvements** |
|
|
|
- Support 4D tensor output in ONNX ([#150](https://github.com/open-mmlab/mmsegmentation/pull/150)) |
|
- Remove redundancies in ONNX export ([#160](https://github.com/open-mmlab/mmsegmentation/pull/160)) |
|
- Migrate to MMCV DepthwiseSeparableConv ([#158](https://github.com/open-mmlab/mmsegmentation/pull/158)) |
|
- Migrate to MMCV collect_env ([#137](https://github.com/open-mmlab/mmsegmentation/pull/137)) |
|
- Use img_prefix and seg_prefix for loading ([#153](https://github.com/open-mmlab/mmsegmentation/pull/153)) |
|
|
|
### V0.6 (10/09/2020) |
|
|
|
**Highlights** |
|
|
|
- Support new methods i.e. MobileNetV2, EMANet, DNL, PointRend, Semantic FPN, Fast-SCNN, ResNeSt. |
|
|
|
**Bug Fixes** |
|
|
|
- Fixed sliding inference ONNX export ([#90](https://github.com/open-mmlab/mmsegmentation/pull/90)) |
|
|
|
**New Features** |
|
|
|
- Support MobileNet v2 ([#86](https://github.com/open-mmlab/mmsegmentation/pull/86)) |
|
- Support EMANet ([#34](https://github.com/open-mmlab/mmsegmentation/pull/34)) |
|
- Support DNL ([#37](https://github.com/open-mmlab/mmsegmentation/pull/37)) |
|
- Support PointRend ([#109](https://github.com/open-mmlab/mmsegmentation/pull/109)) |
|
- Support Semantic FPN ([#94](https://github.com/open-mmlab/mmsegmentation/pull/94)) |
|
- Support Fast-SCNN ([#58](https://github.com/open-mmlab/mmsegmentation/pull/58)) |
|
- Support ResNeSt backbone ([#47](https://github.com/open-mmlab/mmsegmentation/pull/47)) |
|
- Support ONNX export (experimental) ([#12](https://github.com/open-mmlab/mmsegmentation/pull/12)) |
|
|
|
**Improvements** |
|
|
|
- Support Upsample in ONNX ([#100](https://github.com/open-mmlab/mmsegmentation/pull/100)) |
|
- Support Windows install (experimental) ([#75](https://github.com/open-mmlab/mmsegmentation/pull/75)) |
|
- Add more OCRNet results ([#20](https://github.com/open-mmlab/mmsegmentation/pull/20)) |
|
- Add PyTorch 1.6 CI ([#64](https://github.com/open-mmlab/mmsegmentation/pull/64)) |
|
- Get version and githash automatically ([#55](https://github.com/open-mmlab/mmsegmentation/pull/55)) |
|
|
|
### v0.5.1 (11/08/2020) |
|
|
|
**Highlights** |
|
|
|
- Support FP16 and more generalized OHEM |
|
|
|
**Bug Fixes** |
|
|
|
- Fixed Pascal VOC conversion script (#19) |
|
- Fixed OHEM weight assign bug (#54) |
|
- Fixed palette type when palette is not given (#27) |
|
|
|
**New Features** |
|
|
|
- Support FP16 (#21) |
|
- Generalized OHEM (#54) |
|
|
|
**Improvements** |
|
|
|
- Add load-from flag (#33) |
|
- Fixed training tricks doc about different learning rates of model (#26) |
|
|