test / FoodSeg103 /docs /dataset_prepare.md
mccaly's picture
Upload 2805 files
985cc7f

Prepare datasets

It is recommended to symlink the dataset root to $MMSEGMENTATION/data. If your folder structure is different, you may need to change the corresponding paths in config files.

mmsegmentation
β”œβ”€β”€ mmseg
β”œβ”€β”€ tools
β”œβ”€β”€ configs
β”œβ”€β”€ data
β”‚   β”œβ”€β”€ cityscapes
β”‚   β”‚   β”œβ”€β”€ leftImg8bit
β”‚   β”‚   β”‚   β”œβ”€β”€ train
β”‚   β”‚   β”‚   β”œβ”€β”€ val
β”‚   β”‚   β”œβ”€β”€ gtFine
β”‚   β”‚   β”‚   β”œβ”€β”€ train
β”‚   β”‚   β”‚   β”œβ”€β”€ val
β”‚   β”œβ”€β”€ VOCdevkit
β”‚   β”‚   β”œβ”€β”€ VOC2012
β”‚   β”‚   β”‚   β”œβ”€β”€ JPEGImages
β”‚   β”‚   β”‚   β”œβ”€β”€ SegmentationClass
β”‚   β”‚   β”‚   β”œβ”€β”€ ImageSets
β”‚   β”‚   β”‚   β”‚   β”œβ”€β”€ Segmentation
β”‚   β”‚   β”œβ”€β”€ VOC2010
β”‚   β”‚   β”‚   β”œβ”€β”€ JPEGImages
β”‚   β”‚   β”‚   β”œβ”€β”€ SegmentationClassContext
β”‚   β”‚   β”‚   β”œβ”€β”€ ImageSets
β”‚   β”‚   β”‚   β”‚   β”œβ”€β”€ SegmentationContext
β”‚   β”‚   β”‚   β”‚   β”‚   β”œβ”€β”€ train.txt
β”‚   β”‚   β”‚   β”‚   β”‚   β”œβ”€β”€ val.txt
β”‚   β”‚   β”‚   β”œβ”€β”€ trainval_merged.json
β”‚   β”‚   β”œβ”€β”€ VOCaug
β”‚   β”‚   β”‚   β”œβ”€β”€ dataset
β”‚   β”‚   β”‚   β”‚   β”œβ”€β”€ cls
β”‚   β”œβ”€β”€ ade
β”‚   β”‚   β”œβ”€β”€ ADEChallengeData2016
β”‚   β”‚   β”‚   β”œβ”€β”€ annotations
β”‚   β”‚   β”‚   β”‚   β”œβ”€β”€ training
β”‚   β”‚   β”‚   β”‚   β”œβ”€β”€ validation
β”‚   β”‚   β”‚   β”œβ”€β”€ images
β”‚   β”‚   β”‚   β”‚   β”œβ”€β”€ training
β”‚   β”‚   β”‚   β”‚   β”œβ”€β”€ validation
β”‚   β”œβ”€β”€ CHASE_DB1
β”‚   β”‚   β”œβ”€β”€ images
β”‚   β”‚   β”‚   β”œβ”€β”€ training
β”‚   β”‚   β”‚   β”œβ”€β”€ validation
β”‚   β”‚   β”œβ”€β”€ annotations
β”‚   β”‚   β”‚   β”œβ”€β”€ training
β”‚   β”‚   β”‚   β”œβ”€β”€ validation
β”‚   β”œβ”€β”€ DRIVE
β”‚   β”‚   β”œβ”€β”€ images
β”‚   β”‚   β”‚   β”œβ”€β”€ training
β”‚   β”‚   β”‚   β”œβ”€β”€ validation
β”‚   β”‚   β”œβ”€β”€ annotations
β”‚   β”‚   β”‚   β”œβ”€β”€ training
β”‚   β”‚   β”‚   β”œβ”€β”€ validation
β”‚   β”œβ”€β”€ HRF
β”‚   β”‚   β”œβ”€β”€ images
β”‚   β”‚   β”‚   β”œβ”€β”€ training
β”‚   β”‚   β”‚   β”œβ”€β”€ validation
β”‚   β”‚   β”œβ”€β”€ annotations
β”‚   β”‚   β”‚   β”œβ”€β”€ training
β”‚   β”‚   β”‚   β”œβ”€β”€ validation
β”‚   β”œβ”€β”€ STARE
β”‚   β”‚   β”œβ”€β”€ images
β”‚   β”‚   β”‚   β”œβ”€β”€ training
β”‚   β”‚   β”‚   β”œβ”€β”€ validation
β”‚   β”‚   β”œβ”€β”€ annotations
β”‚   β”‚   β”‚   β”œβ”€β”€ training
β”‚   β”‚   β”‚   β”œβ”€β”€ validation

Cityscapes

The data could be found here after registration.

By convention, **labelTrainIds.png are used for cityscapes training. We provided a scripts based on cityscapesscripts to generate **labelTrainIds.png.

# --nproc means 8 process for conversion, which could be omitted as well.
python tools/convert_datasets/cityscapes.py data/cityscapes --nproc 8

Pascal VOC

Pascal VOC 2012 could be downloaded from here. Beside, most recent works on Pascal VOC dataset usually exploit extra augmentation data, which could be found here.

If you would like to use augmented VOC dataset, please run following command to convert augmentation annotations into proper format.

# --nproc means 8 process for conversion, which could be omitted as well.
python tools/convert_datasets/voc_aug.py data/VOCdevkit data/VOCdevkit/VOCaug --nproc 8

Please refer to concat dataset for details about how to concatenate them and train them together.

ADE20K

The training and validation set of ADE20K could be download from this link. We may also download test set from here.

Pascal Context

The training and validation set of Pascal Context could be download from here. You may also download test set from here after registration.

To split the training and validation set from original dataset, you may download trainval_merged.json from here.

If you would like to use Pascal Context dataset, please install Detail and then run the following command to convert annotations into proper format.

python tools/convert_datasets/pascal_context.py data/VOCdevkit data/VOCdevkit/VOC2010/trainval_merged.json

CHASE DB1

The training and validation set of CHASE DB1 could be download from here.

To convert CHASE DB1 dataset to MMSegmentation format, you should run the following command:

python tools/convert_datasets/chase_db1.py /path/to/CHASEDB1.zip

The script will make directory structure automatically.

DRIVE

The training and validation set of DRIVE could be download from here. Before that, you should register an account. Currently '1st_manual' is not provided officially.

To convert DRIVE dataset to MMSegmentation format, you should run the following command:

python tools/convert_datasets/drive.py /path/to/training.zip /path/to/test.zip

The script will make directory structure automatically.

HRF

First, download healthy.zip, glaucoma.zip, diabetic_retinopathy.zip, healthy_manualsegm.zip, glaucoma_manualsegm.zip and diabetic_retinopathy_manualsegm.zip.

To convert HRF dataset to MMSegmentation format, you should run the following command:

python tools/convert_datasets/hrf.py /path/to/healthy.zip /path/to/healthy_manualsegm.zip /path/to/glaucoma.zip /path/to/glaucoma_manualsegm.zip /path/to/diabetic_retinopathy.zip /path/to/diabetic_retinopathy_manualsegm.zip

The script will make directory structure automatically.

STARE

First, download stare-images.tar, labels-ah.tar and labels-vk.tar.

To convert STARE dataset to MMSegmentation format, you should run the following command:

python tools/convert_datasets/stare.py /path/to/stare-images.tar /path/to/labels-ah.tar /path/to/labels-vk.tar

The script will make directory structure automatically.