test / FoodSeg103 /docs /tutorials /data_pipeline.md
mccaly's picture
Upload 2805 files
985cc7f
# Tutorial 3: Customize Data Pipelines
## Design of Data pipelines
Following typical conventions, we use `Dataset` and `DataLoader` for data loading
with multiple workers. `Dataset` returns a dict of data items corresponding
the arguments of models' forward method.
Since the data in semantic segmentation may not be the same size,
we introduce a new `DataContainer` type in MMCV to help collect and distribute
data of different size.
See [here](https://github.com/open-mmlab/mmcv/blob/master/mmcv/parallel/data_container.py) for more details.
The data preparation pipeline and the dataset is decomposed. Usually a dataset
defines how to process the annotations and a data pipeline defines all the steps to prepare a data dict.
A pipeline consists of a sequence of operations. Each operation takes a dict as input and also output a dict for the next transform.
The operations are categorized into data loading, pre-processing, formatting and test-time augmentation.
Here is an pipeline example for PSPNet.
```python
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
crop_size = (512, 1024)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations'),
dict(type='Resize', img_scale=(2048, 1024), ratio_range=(0.5, 2.0)),
dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75),
dict(type='RandomFlip', flip_ratio=0.5),
dict(type='PhotoMetricDistortion'),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_semantic_seg']),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(2048, 1024),
# img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75],
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(type='Normalize', **img_norm_cfg),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img']),
])
]
```
For each operation, we list the related dict fields that are added/updated/removed.
### Data loading
`LoadImageFromFile`
- add: img, img_shape, ori_shape
`LoadAnnotations`
- add: gt_semantic_seg, seg_fields
### Pre-processing
`Resize`
- add: scale, scale_idx, pad_shape, scale_factor, keep_ratio
- update: img, img_shape, *seg_fields
`RandomFlip`
- add: flip
- update: img, *seg_fields
`Pad`
- add: pad_fixed_size, pad_size_divisor
- update: img, pad_shape, *seg_fields
`RandomCrop`
- update: img, pad_shape, *seg_fields
`Normalize`
- add: img_norm_cfg
- update: img
`SegRescale`
- update: gt_semantic_seg
`PhotoMetricDistortion`
- update: img
### Formatting
`ToTensor`
- update: specified by `keys`.
`ImageToTensor`
- update: specified by `keys`.
`Transpose`
- update: specified by `keys`.
`ToDataContainer`
- update: specified by `fields`.
`DefaultFormatBundle`
- update: img, gt_semantic_seg
`Collect`
- add: img_meta (the keys of img_meta is specified by `meta_keys`)
- remove: all other keys except for those specified by `keys`
### Test time augmentation
`MultiScaleFlipAug`
## Extend and use custom pipelines
1. Write a new pipeline in any file, e.g., `my_pipeline.py`. It takes a dict as input and return a dict.
```python
from mmseg.datasets import PIPELINES
@PIPELINES.register_module()
class MyTransform:
def __call__(self, results):
results['dummy'] = True
return results
```
2. Import the new class.
```python
from .my_pipeline import MyTransform
```
3. Use it in config files.
```python
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
crop_size = (512, 1024)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations'),
dict(type='Resize', img_scale=(2048, 1024), ratio_range=(0.5, 2.0)),
dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75),
dict(type='RandomFlip', flip_ratio=0.5),
dict(type='PhotoMetricDistortion'),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255),
dict(type='MyTransform'),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_semantic_seg']),
]
```