Spaces:
Sleeping
Sleeping
File size: 26,869 Bytes
df481b9 f025bf0 bc80edf 94dc448 f025bf0 95b3eeb f025bf0 95d7700 94dc448 95d7700 f025bf0 94dc448 f025bf0 94dc448 f025bf0 94dc448 f025bf0 3a80282 95d7700 3a80282 95b3eeb 95d7700 95b3eeb 94dc448 95d7700 94dc448 95d7700 94dc448 95d7700 94dc448 95d7700 94dc448 95d7700 94dc448 5477235 3a80282 95d7700 3a80282 95d7700 3a80282 94dc448 95d7700 3a80282 95d7700 3a80282 95d7700 94dc448 3a80282 94dc448 95d7700 94dc448 95d7700 94dc448 95d7700 94dc448 3a80282 f025bf0 ad3750e 94dc448 ad3750e 94dc448 95d7700 95b3eeb 94dc448 bc80edf 95b3eeb 94dc448 95b3eeb 94dc448 f025bf0 95b3eeb 94dc448 f025bf0 94dc448 f025bf0 95d7700 94dc448 f025bf0 95d7700 94dc448 f025bf0 95d7700 f025bf0 94dc448 d71385a 94dc448 95d7700 94dc448 95d7700 95b3eeb 94dc448 95b3eeb f025bf0 94dc448 95d7700 3a80282 94dc448 95d7700 3a80282 94dc448 f025bf0 95b3eeb 95d7700 94dc448 3a80282 94dc448 3a80282 94dc448 5477235 94dc448 3a80282 f025bf0 94dc448 f025bf0 94dc448 3a80282 95b3eeb 3a80282 94dc448 5477235 94dc448 95b3eeb 94dc448 95b3eeb 94dc448 95b3eeb 94dc448 f025bf0 95d7700 f025bf0 95d7700 3a80282 94dc448 95d7700 94dc448 95d7700 94dc448 95d7700 94dc448 95d7700 94dc448 95d7700 94dc448 95d7700 3a80282 94dc448 3a80282 94dc448 95d7700 3a80282 95d7700 94dc448 95d7700 94dc448 95d7700 94dc448 95d7700 df481b9 f025bf0 3a80282 95b3eeb 94dc448 f025bf0 95d7700 f025bf0 94dc448 95d7700 94dc448 3a80282 95b3eeb 94dc448 95b3eeb 94dc448 95b3eeb 95d7700 95b3eeb 94dc448 df481b9 95b3eeb 94dc448 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 |
import streamlit as st
import google.generativeai as genai
import zipfile
import io
import json
import os # Still needed for API key potentially, but not model names
from pathlib import Path
import time
# --- Configuration ---
# Model names are now discovered dynamically. Remove hardcoded names.
MAX_PROMPT_TOKENS_ESTIMATE = 800000 # Keep this estimate
RESULTS_PAGE_SIZE = 25
AVAILABLE_ANALYSES = { # Keep analyses config
"generate_docs": "Generate Missing Docstrings/Comments",
"find_bugs": "Identify Potential Bugs & Anti-patterns",
"check_style": "Check Style Guide Compliance (General)",
"summarize_modules": "Summarize Complex Modules/Files",
"suggest_refactoring": "Suggest Refactoring Opportunities",
}
CODE_EXTENSIONS = {
'.py', '.js', '.java', '.c', '.cpp', '.h', '.cs', '.go', '.rb',
'.php', '.swift', '.kt', '.ts', '.html', '.css', '.scss', '.sql'
} # Keep extensions
# --- Session State Initialization ---
# (Keep most session state, add one for the selected model)
if 'mock_api_call' not in st.session_state:
st.session_state.mock_api_call = False
if 'analysis_results' not in st.session_state:
st.session_state.analysis_results = None
if 'error_message' not in st.session_state:
st.session_state.error_message = None
if 'analysis_requested' not in st.session_state:
st.session_state.analysis_requested = False
if 'selected_model_name' not in st.session_state:
st.session_state.selected_model_name = None # Will hold the "models/..." name
if 'available_models_dict' not in st.session_state:
st.session_state.available_models_dict = {} # Store display_name -> name mapping
# --- Gemini API Setup & Model Discovery ---
model = None # Global variable for the initialized model instance
# --- NEW: Function to list available models ---
@st.cache_data(ttl=3600) # Cache model list for an hour
def get_available_models():
"""Lists models supporting 'generateContent' using the API key."""
model_dict = {}
try:
if 'GEMINI_API_KEY' not in st.secrets:
# Don't stop here, let the main part handle it, but return empty
print("API key not found in secrets during model listing attempt.")
return {}
# Configure API key temporarily just for listing
genai.configure(api_key=st.secrets["GEMINI_API_KEY"])
print("Listing available models via API...")
for m in genai.list_models():
# Check if the model supports the 'generateContent' method
if 'generateContent' in m.supported_generation_methods:
# Store mapping: user-friendly name -> internal name
model_dict[m.display_name] = m.name
print(f"Found {len(model_dict)} compatible models.")
return model_dict
except Exception as e:
st.error(f"π¨ Error listing available models: {e}")
return {} # Return empty on error
def initialize_gemini_model():
"""Initializes the Gemini model based on the selected name."""
global model
selected_name = st.session_state.get('selected_model_name')
if selected_name and model is None and not st.session_state.mock_api_call:
try:
if 'GEMINI_API_KEY' not in st.secrets:
st.error("π¨ Gemini API Key not found. Add it to `.streamlit/secrets.toml`.")
st.stop() # Stop if key missing for initialization
# Configure API key (might be redundant if list_models worked, but safe)
genai.configure(api_key=st.secrets["GEMINI_API_KEY"])
print(f"Initializing Gemini Model: {selected_name}")
# Use the selected model name from session state
model = genai.GenerativeModel(model_name=selected_name)
print(f"Gemini Model Initialized ({selected_name}).")
return True
except Exception as e:
st.error(f"π¨ Error initializing selected Gemini model '{selected_name}': {e}")
st.session_state.selected_model_name = None # Reset selection on error
st.stop()
return False
elif st.session_state.mock_api_call:
return True # No init needed for mock mode
elif model is not None and model.model_name == selected_name:
return True # Already initialized with the correct model
elif model is not None and model.model_name != selected_name:
print("Model changed. Re-initializing...")
model = None # Reset model instance
return initialize_gemini_model() # Recurse to re-initialize with new name
elif not selected_name and not st.session_state.mock_api_call:
# This case happens if no model is selected yet
return False # Cannot initialize without a selection
return False # Default case
# --- Helper Functions ---
# Updated estimate_token_count to support integers and strings
def estimate_token_count(text):
"""
Estimates the token count.
If a string is provided, it calculates based on its length.
If an integer is provided (e.g., total character count), it uses that directly.
"""
if isinstance(text, int):
return text // 3
return len(text) // 3
@st.cache_data(max_entries=5)
def process_zip_file_cached(file_id, file_size, file_content_bytes):
"""
Processes a ZIP file and extracts code files.
Returns a tuple of (code_files dict, total_chars, file_count, ignored_files list).
"""
code_files = {}
total_chars = 0
file_count = 0
ignored_files = []
status_placeholder = st.empty()
progress_bar = status_placeholder.progress(0)
try:
with zipfile.ZipFile(io.BytesIO(file_content_bytes), 'r') as zip_ref:
members = zip_ref.infolist()
total_members = len(members)
for i, member in enumerate(members):
if i % 10 == 0:
progress_bar.progress(int((i / total_members) * 100))
if member.is_dir() or any(p.startswith('.') for p in Path(member.filename).parts) or '__' in member.filename:
continue
file_path = Path(member.filename)
if file_path.suffix.lower() in CODE_EXTENSIONS:
try:
with zip_ref.open(member) as file:
file_bytes = file.read()
try:
content = file_bytes.decode('utf-8')
except UnicodeDecodeError:
try:
content = file_bytes.decode('latin-1')
except Exception as decode_err:
ignored_files.append(f"{member.filename} (Decode Error: {decode_err})")
continue
code_files[member.filename] = content
total_chars += len(content)
file_count += 1
except Exception as read_err:
ignored_files.append(f"{member.filename} (Read Error: {read_err})")
else:
if not (any(p.startswith('.') for p in Path(member.filename).parts) or '__' in member.filename):
ignored_files.append(f"{member.filename} (Skipped Extension: {file_path.suffix})")
progress_bar.progress(100)
status_placeholder.empty()
except zipfile.BadZipFile:
status_placeholder.empty()
st.error("π¨ Invalid ZIP.")
return None, 0, 0, []
except Exception as e:
status_placeholder.empty()
st.error(f"π¨ ZIP Error: {e}")
return None, 0, 0, []
if file_count == 0:
if not ignored_files:
st.warning("No code files found.")
else:
st.warning("No code files found; some skipped.")
return code_files, total_chars, file_count, ignored_files
def construct_analysis_prompt(code_files_dict, requested_analyses):
"""
Constructs the prompt for analysis by including code files and JSON structure for expected output.
Returns the full prompt and a list of included files.
"""
prompt_parts = ["Analyze the following codebase...\n\n"]
current_token_estimate = estimate_token_count(prompt_parts[0])
included_files = []
code_segments = []
prompt_status = st.empty()
if len(code_files_dict) > 50:
prompt_status.info("Constructing prompt...")
for filename, content in code_files_dict.items():
segment = f"--- START FILE: {filename} ---\n{content}\n--- END FILE: {filename} ---\n\n"
segment_token_estimate = estimate_token_count(segment)
if current_token_estimate + segment_token_estimate <= MAX_PROMPT_TOKENS_ESTIMATE:
code_segments.append(segment)
current_token_estimate += segment_token_estimate
included_files.append(filename)
else:
st.warning(f"β οΈ Codebase may exceed context limit. Analyzed first {len(included_files)} files (~{current_token_estimate:,} tokens).")
break
prompt_status.empty()
if not included_files:
st.error("π¨ No code files included in prompt.")
return None, []
prompt_parts.append("".join(code_segments))
json_structure_description = "{\n"
structure_parts = []
if "generate_docs" in requested_analyses:
structure_parts.append(' "documentation_suggestions": [...]')
if "find_bugs" in requested_analyses:
structure_parts.append(' "potential_bugs": [...]')
if "check_style" in requested_analyses:
structure_parts.append(' "style_issues": [...]')
if "summarize_modules" in requested_analyses:
structure_parts.append(' "module_summaries": [...]')
if "suggest_refactoring" in requested_analyses:
structure_parts.append(' "refactoring_suggestions": [...]')
json_structure_description += ",\n".join(structure_parts) + "\n}"
prompt_footer = f"\n**Analysis Task:**...\n**Output Format:**...\n{json_structure_description}\n**JSON Output Only:**\n"
prompt_parts.append(prompt_footer)
full_prompt = "".join(prompt_parts)
return full_prompt, included_files
def call_gemini_api(prompt):
"""
Calls the Gemini API using the provided prompt.
Returns the parsed JSON insights or an error message.
"""
if not prompt:
return None, "Prompt generation failed."
# MOCK MODE
if st.session_state.mock_api_call:
st.info(" MOCK MODE: Simulating API call...")
time.sleep(1)
mock_json_response = json.dumps({
"documentation_suggestions": [],
"potential_bugs": [],
"style_issues": [],
"module_summaries": [],
"refactoring_suggestions": []
})
st.success("Mock response generated.")
return json.loads(mock_json_response), None
# REAL API CALL
else:
if not initialize_gemini_model():
return None, "Gemini Model Initialization Failed."
if model is None:
return None, "Gemini model not selected or available." # Added check
try:
api_status = st.empty()
api_status.info(f"π‘ Sending request to {model.model_name} (Est. prompt tokens: {estimate_token_count(prompt):,})... Please wait.")
start_time = time.time()
response = model.generate_content(
prompt,
generation_config=genai.types.GenerationConfig(temperature=0.2),
safety_settings=[
{"category": c, "threshold": "BLOCK_MEDIUM_AND_ABOVE"}
for c in ["HARM_CATEGORY_HARASSMENT", "HARM_CATEGORY_HATE_SPEECH",
"HARM_CATEGORY_SEXUALLY_EXPLICIT", "HARM_CATEGORY_DANGEROUS_CONTENT"]
]
)
end_time = time.time()
api_status.success(f"β
Response received from AI ({model.model_name}) in {end_time - start_time:.2f}s.")
time.sleep(1)
api_status.empty()
try:
json_response_text = response.text.strip()
# Remove markdown code fences if present
if json_response_text.startswith("```json"):
json_response_text = json_response_text[7:]
if json_response_text.startswith("```"):
json_response_text = json_response_text[3:]
if json_response_text.endswith("```"):
json_response_text = json_response_text[:-3]
json_start = json_response_text.find('{')
json_end = json_response_text.rfind('}') + 1
if json_start != -1 and json_end != -1 and json_end > json_start:
final_json_text = json_response_text[json_start:json_end]
insights = json.loads(final_json_text)
return insights, None
else:
st.warning("β οΈ Could not find valid JSON object.")
return {"raw_response": response.text}, "AI response did not contain clear JSON object."
except json.JSONDecodeError as json_err:
st.error(f"π¨ Error parsing JSON: {json_err}")
st.code(response.text, language='text')
return None, f"AI response not valid JSON: {json_err}"
except AttributeError:
st.error("π¨ Unexpected API response structure (AttributeError).")
st.code(f"Response object: {response}", language='text')
return None, "Unexpected response structure (AttributeError)."
except Exception as e:
st.error(f"π¨ Unexpected issue processing response: {e}")
try:
st.code(f"Response object: {response}", language='text')
except Exception:
pass
return None, f"Unexpected response structure: {e}"
except Exception as e:
api_status.empty()
st.error(f"π¨ API call error: {e}")
error_msg = f"API call failed: {e}"
if hasattr(e, 'message'):
if "429" in e.message:
error_msg = "API Quota Exceeded or Rate Limit hit."
elif "API key not valid" in e.message:
error_msg = "Invalid Gemini API Key."
elif "permission denied" in e.message.lower():
error_msg = f"Permission Denied for model '{st.session_state.selected_model_name}'. Check API key access."
elif "blocked" in e.message.lower():
error_msg = "Content blocked due to safety settings."
elif "block_reason: SAFETY" in str(e):
error_msg = "Content blocked due to safety settings."
return None, error_msg
def display_results(results_json, requested_analyses):
"""
Displays the analysis results with pagination and allows JSON download.
"""
st.header("π Analysis Report")
if not isinstance(results_json, dict):
st.error("Invalid results format.")
st.json(results_json)
return
if "raw_response" in results_json:
st.subheader("Raw AI Response (JSON Parsing Failed)")
st.code(results_json["raw_response"], language='text')
return
display_config = {
"generate_docs": {
"key": "documentation_suggestions",
"title": AVAILABLE_ANALYSES["generate_docs"],
"fields": {"file": "File", "line": "Line"}
},
"find_bugs": {
"key": "potential_bugs",
"title": AVAILABLE_ANALYSES["find_bugs"],
"fields": {"file": "File", "line": "Line", "severity": "Severity"}
},
"check_style": {
"key": "style_issues",
"title": AVAILABLE_ANALYSES["check_style"],
"fields": {"file": "File", "line": "Line"}
},
"summarize_modules": {
"key": "module_summaries",
"title": AVAILABLE_ANALYSES["summarize_modules"],
"fields": {"file": "File"}
},
"suggest_refactoring": {
"key": "refactoring_suggestions",
"title": AVAILABLE_ANALYSES["suggest_refactoring"],
"fields": {"file": "File", "line": "Line", "area": "Area"}
},
}
any_results_found = False
for analysis_key in requested_analyses:
if analysis_key in display_config:
config = display_config[analysis_key]
items = results_json.get(config["key"], [])
total_items = len(items)
st.subheader(f"{config['title']} ({total_items} found)")
if items:
any_results_found = True
state_key = f"visible_{analysis_key}"
if state_key not in st.session_state:
st.session_state[state_key] = RESULTS_PAGE_SIZE
visible_count = st.session_state[state_key]
items_to_display = items[:visible_count]
for item in items_to_display:
details = [
f"**{field_label}:** `{item.get(field_key, 'N/A')}`" if field_key == 'file'
else f"**{field_label}:** {item.get(field_key, 'N/A')}"
for field_key, field_label in config["fields"].items()
if item.get(field_key, 'N/A') != 'N/A'
]
st.markdown("- " + " - ".join(details))
if 'suggestion' in item:
st.code(item['suggestion'], language='text')
elif 'description' in item:
st.markdown(f" > {item['description']}")
elif 'summary' in item:
st.markdown(f" > {item['summary']}")
if total_items > visible_count:
if st.button(f"Show more ({total_items - visible_count} remaining)", key=f"more_{analysis_key}"):
st.session_state[state_key] += RESULTS_PAGE_SIZE
st.rerun()
else:
st.markdown("_No items found for this category._")
st.divider()
if not any_results_found:
st.info("No specific findings were identified.")
st.download_button(
label="Download Full Report (JSON)",
data=json.dumps(results_json, indent=4),
file_name="code_audit_report.json",
mime="application/json"
)
# --- Streamlit App Main Interface ---
st.set_page_config(page_title="Codebase Audit Assistant", layout="wide")
st.title("π€ Codebase Audit & Documentation Assistant")
# --- Sidebar ---
with st.sidebar:
st.header("βοΈ Analysis Controls")
st.session_state.mock_api_call = st.toggle(
"π§ͺ Enable Mock API Mode",
value=st.session_state.mock_api_call,
help="Use fake data instead of calling Gemini API."
)
st.divider()
st.header("β Select Model")
# --- NEW: Dynamic Model Selection ---
if not st.session_state.mock_api_call:
# Get available models (uses cache)
st.session_state.available_models_dict = get_available_models()
model_display_names = list(st.session_state.available_models_dict.keys())
if model_display_names:
# Try to find the index of the previously selected model
current_model_display_name = None
if st.session_state.selected_model_name:
# Find display name matching the stored internal name
for disp_name, internal_name in st.session_state.available_models_dict.items():
if internal_name == st.session_state.selected_model_name:
current_model_display_name = disp_name
break
try:
selected_index = model_display_names.index(current_model_display_name) if current_model_display_name in model_display_names else 0
except ValueError:
selected_index = 0 # Default to first if previous selection not found
selected_display_name = st.selectbox(
"Choose Gemini model:",
options=model_display_names,
index=selected_index,
key="model_selector",
help="Select the Gemini model to use for analysis."
)
# Update session state with the internal name based on selection
st.session_state.selected_model_name = st.session_state.available_models_dict.get(selected_display_name)
st.info(f"Using REAL Gemini API ({st.session_state.selected_model_name})")
elif 'GEMINI_API_KEY' in st.secrets:
st.warning("No compatible models found or error listing models. Check API Key permissions.")
st.session_state.selected_model_name = None # Ensure no model selected
else:
st.warning("Add GEMINI_API_KEY to secrets to list models.")
st.session_state.selected_model_name = None
else: # Mock mode is active
st.info("Mock API Mode ACTIVE")
st.session_state.selected_model_name = "mock_model" # Use a placeholder name for mock mode
# --- End Dynamic Model Selection ---
st.divider()
st.header("π Select Analyses")
selected_analyses = [
key for key, name in AVAILABLE_ANALYSES.items()
if st.checkbox(name, value=True, key=f"cb_{key}")
]
st.divider()
st.header("π How To Use")
st.info(
"1. Set API Key.\n"
"2. Toggle Mock Mode if needed.\n"
"3. Select Model (if not Mock).\n"
"4. Select analyses.\n"
"5. Upload ZIP.\n"
"6. Click 'Analyze'.\n"
"7. Review report."
)
st.info(f"Note: Limited by token estimates (~{MAX_PROMPT_TOKENS_ESTIMATE:,} est. tokens).")
st.divider()
st.warning("β οΈ **Privacy:** Code sent to Google API if Mock Mode is OFF.")
# Update title dynamically based on selected model
if st.session_state.selected_model_name and not st.session_state.mock_api_call:
st.markdown(f"Upload codebase (`.zip`) for analysis via **{st.session_state.selected_model_name}**.")
elif st.session_state.mock_api_call:
st.markdown("Upload codebase (`.zip`) for analysis (Using **Mock Data**).")
else:
st.markdown("Upload codebase (`.zip`) for analysis.")
# --- Main Content Area ---
uploaded_file = st.file_uploader(
"π Upload Codebase ZIP File",
type=['zip'],
key="file_uploader",
on_change=lambda: st.session_state.update(
analysis_results=None,
error_message=None,
analysis_requested=False
)
)
analysis_button_placeholder = st.empty()
results_placeholder = st.container()
if uploaded_file:
st.success(f"β
File '{uploaded_file.name}' uploaded.")
uploaded_file_bytes = uploaded_file.getvalue()
file_id = f"{uploaded_file.name}-{uploaded_file.size}"
code_files, total_chars, file_count, ignored_files = process_zip_file_cached(
file_id, uploaded_file.size, uploaded_file_bytes
)
if code_files is not None:
st.info(f"Found **{file_count}** code files ({total_chars:,} chars). Est. tokens: ~{estimate_token_count(total_chars):,}")
if ignored_files:
with st.expander(f"View {len(ignored_files)} Skipped/Ignored Files"):
st.code("\n".join(ignored_files), language='text')
# Disable button if no model selected (and not in mock mode)
model_ready = bool(st.session_state.selected_model_name) or st.session_state.mock_api_call
analyze_button_disabled = (not selected_analyses or file_count == 0 or not model_ready)
analyze_button_label = "Analyze Codebase"
if not model_ready:
analyze_button_label = "Select Model First"
elif analyze_button_disabled:
analyze_button_label = "Select Analyses or Upload Valid Code"
if analysis_button_placeholder.button(
analyze_button_label,
type="primary",
disabled=analyze_button_disabled
):
st.session_state.analysis_requested = True
st.session_state.analysis_results = None
st.session_state.error_message = None
if not selected_analyses:
st.warning("Please select analysis types.")
elif file_count == 0:
st.warning("No relevant code files found.")
elif not model_ready:
st.warning("Please select a Gemini model from the sidebar.")
else:
with results_placeholder:
spinner_model_name = (
st.session_state.selected_model_name
if not st.session_state.mock_api_call
else "Mock Mode"
)
spinner_msg = f"π Preparing prompt & contacting AI ({spinner_model_name})... Please wait."
with st.spinner(spinner_msg):
analysis_prompt, included_files_in_prompt = construct_analysis_prompt(code_files, selected_analyses)
if analysis_prompt and included_files_in_prompt:
results_json, error_msg = call_gemini_api(analysis_prompt)
st.session_state.analysis_results = results_json
st.session_state.error_message = error_msg
elif not included_files_in_prompt:
st.session_state.error_message = "Could not proceed: No files included."
else:
st.session_state.error_message = "Failed to generate analysis prompt."
st.rerun()
# Display results (Keep the same logic)
if st.session_state.analysis_requested:
with results_placeholder:
st.divider()
if st.session_state.error_message:
st.error(f"Analysis Failed: {st.session_state.error_message}")
if isinstance(st.session_state.analysis_results, dict) and "raw_response" in st.session_state.analysis_results:
st.subheader("Raw AI Response")
st.code(st.session_state.analysis_results["raw_response"], language='text')
elif st.session_state.analysis_results:
display_results(st.session_state.analysis_results, selected_analyses)
else:
st.info("Analysis initiated, but no results/errors stored.")
elif not uploaded_file:
results_placeholder.info("Upload a ZIP file to begin.")
results_placeholder.divider()
results_placeholder.markdown("_Assistant powered by Google Gemini._")
|