Spaces:
Sleeping
Sleeping
File size: 10,266 Bytes
49d873b 092c2a9 63a9cd3 e490e03 309eec4 773f0cf 2c362d2 309eec4 10c7dea 3acbc9c 309eec4 221fe0a 63a9cd3 221fe0a 092c2a9 63a9cd3 221fe0a 092c2a9 63a9cd3 221fe0a 63a9cd3 221fe0a 49d873b 63a9cd3 49d873b 10c7dea e490e03 092c2a9 e490e03 10c7dea 2c362d2 b3a1f0c 221fe0a 2c362d2 67e3963 e490e03 092c2a9 e490e03 221fe0a 72a73ff e490e03 092c2a9 e490e03 221fe0a 092c2a9 f0be302 221fe0a 092c2a9 49d873b 092c2a9 49d873b 773f0cf 49d873b 092c2a9 221fe0a f0be302 092c2a9 63a9cd3 9414ba2 f0be302 49d873b 221fe0a 092c2a9 773f0cf 9414ba2 c7c64f3 773f0cf 221fe0a 092c2a9 c7c64f3 092c2a9 773f0cf 092c2a9 309eec4 092c2a9 773f0cf 221fe0a 10c7dea 773f0cf 63a9cd3 773f0cf 9414ba2 63a9cd3 49d873b 63a9cd3 10c7dea e490e03 092c2a9 e490e03 f0be302 2c362d2 10c7dea 49d873b 9414ba2 092c2a9 9414ba2 773f0cf 9414ba2 10c7dea 092c2a9 9414ba2 e490e03 221fe0a 49d873b 773f0cf e490e03 092c2a9 e490e03 523228c 9414ba2 221fe0a e490e03 523228c 221fe0a 773f0cf 3acbc9c d826a13 221fe0a c7c64f3 092c2a9 c7c64f3 63a9cd3 c7c64f3 f0be302 092c2a9 63a9cd3 092c2a9 523228c 221fe0a 63a9cd3 773f0cf e490e03 092c2a9 e490e03 523228c 3acbc9c 773f0cf 092c2a9 d826a13 63a9cd3 9414ba2 d037161 3acbc9c 63a9cd3 773f0cf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
# app.py โ BizIntel AI Ultra
# Supports: CSV/Excel/DB ingestion, date+metric plotting, ARIMA forecasting,
# safe Plotly writes into /tmp, Gemini 1.5 Pro strategy, KPI cards, optional EDA.
import os
import tempfile
import pandas as pd
import streamlit as st
import google.generativeai as genai
import plotly.graph_objects as go
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
# 0) Monkeyโpatch Plotly to write images into /tmp (writable)
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
TMP = tempfile.gettempdir()
_orig_write = go.Figure.write_image
def _safe_write(self, path, *args, **kwargs):
filename = os.path.basename(path)
safe_path = os.path.join(TMP, filename)
return _orig_write(self, safe_path, *args, **kwargs)
go.Figure.write_image = _safe_write
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
# 1) Tool & DB imports
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
from tools.csv_parser import parse_csv_tool
from tools.plot_generator import plot_metric_tool
from tools.forecaster import forecast_metric_tool
from tools.visuals import histogram_tool, scatter_matrix_tool, corr_heatmap_tool
from db_connector import fetch_data_from_db, list_tables, SUPPORTED_ENGINES
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
# 2) Gemini 1.5 Pro initialization
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
genai.configure(api_key=os.getenv("GEMINI_APIKEY"))
gemini = genai.GenerativeModel(
"gemini-1.5-pro-latest",
generation_config={
"temperature": 0.7,
"top_p": 0.9,
"response_mime_type": "text/plain",
},
)
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
# 3) Streamlit page setup
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
st.set_page_config(page_title="BizIntel AI Ultra", layout="wide")
st.title("๐ BizIntel AI Ultra โ Advanced Analytics + Gemini 1.5 Pro")
TEMP_DIR = tempfile.gettempdir()
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
# 4) Data source selection: CSV/Excel or SQL Database
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
source = st.radio("Select data source", ["Upload CSV / Excel", "Connect to SQL Database"])
csv_path = None
if source == "Upload CSV / Excel":
upload = st.file_uploader("Upload CSV or Excel (โค 500 MB)", type=["csv","xlsx","xls"])
if upload:
tmp_file = os.path.join(TEMP_DIR, upload.name)
with open(tmp_file, "wb") as f:
f.write(upload.read())
if upload.name.lower().endswith(".csv"):
csv_path = tmp_file
else:
try:
df_xl = pd.read_excel(tmp_file, sheet_name=0)
csv_path = tmp_file.rsplit(".", 1)[0] + ".csv"
df_xl.to_csv(csv_path, index=False)
except Exception as e:
st.error(f"Excel parsing failed: {e}")
st.stop()
st.success(f"{upload.name} saved โ
")
else:
engine = st.selectbox("DB engine", SUPPORTED_ENGINES)
conn = st.text_input("SQLAlchemy connection string")
if conn:
try:
tables = list_tables(conn)
tbl = st.selectbox("Table", tables)
if st.button("Fetch table"):
csv_path = fetch_data_from_db(conn, tbl)
st.success(f"Fetched **{tbl}** as CSV โ
")
except Exception as e:
st.error(f"Connection failed: {e}")
st.stop()
if not csv_path:
st.stop()
# Download the working CSV
with open(csv_path, "rb") as f:
st.download_button("โฌ๏ธ Download working CSV", f, file_name=os.path.basename(csv_path))
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
# 5) Show head & pick date + metric (but never the same column)
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
df_head = pd.read_csv(csv_path, nrows=5)
st.dataframe(df_head)
# a) Date dropdown over all columns
date_col = st.selectbox("Select date/time column", df_head.columns)
# b) Metric dropdown only numeric columns, excluding the chosen date_col
numeric_cols = df_head.select_dtypes("number").columns.tolist()
metric_options = [c for c in numeric_cols if c != date_col]
if not metric_options:
st.error(f"No numeric columns available once we exclude '{date_col}'.")
st.stop()
metric_col = st.selectbox("Select numeric metric column", metric_options)
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
# 6) Local analysis: summary, trend chart, forecast
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
with st.spinner("Parsing datasetโฆ"):
summary_text = parse_csv_tool(csv_path)
with st.spinner("Generating trend chartโฆ"):
trend_fig = plot_metric_tool(csv_path, date_col, metric_col)
if isinstance(trend_fig, go.Figure):
st.subheader("๐ Trend")
st.plotly_chart(trend_fig, use_container_width=True)
else:
st.warning(trend_fig)
with st.spinner("Running forecastโฆ"):
forecast_text = forecast_metric_tool(csv_path, date_col, metric_col)
st.subheader(f"๐ฎ {metric_col} Forecast")
forecast_png = os.path.join(TEMP_DIR, "forecast_plot.png")
if os.path.exists(forecast_png):
st.image(forecast_png, use_container_width=True)
else:
st.warning("Forecast image not found.")
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
# 7) Gemini-driven strategy recommendations
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
prompt = (
f"You are **BizIntel Strategist AI**.\n\n"
f"### Dataset Summary\n```\n{summary_text}\n```\n\n"
f"### {metric_col} Forecast\n```\n{forecast_text}\n```\n\n"
"Return **Markdown** with:\n"
"1. Five key insights\n"
"2. Three actionable strategies\n"
"3. Risk factors or anomalies\n"
"4. Suggested additional visuals\n"
)
st.subheader("๐ Strategy Recommendations (Gemini 1.5 Pro)")
with st.spinner("Generating insightsโฆ"):
strategy_md = gemini.generate_content(prompt).text
st.markdown(strategy_md)
st.download_button("โฌ๏ธ Download Strategy (.md)", strategy_md, file_name="strategy.md")
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
# 8) KPI cards + detailed Stats
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
full_df = pd.read_csv(csv_path, low_memory=False)
total_rows = len(full_df)
num_columns = full_df.shape[1]
missing_pct = full_df.isna().mean().mean() * 100
st.markdown("---")
st.subheader("๐ Dataset Overview")
c1, c2, c3 = st.columns(3)
c1.metric("Rows", f"{total_rows:,}")
c2.metric("Columns", str(num_columns))
c3.metric("Missing %", f"{missing_pct:.1f}%")
with st.expander("๐ Detailed descriptive statistics"):
stats_df = (
full_df.describe()
.T
.reset_index()
.rename(columns={"index":"Feature"})
)
st.dataframe(
stats_df.style.format(precision=2).background_gradient(cmap="Blues"),
use_container_width=True
)
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
# 9) Optional Exploratory Visuals
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
st.markdown("---")
st.subheader("๐ Optional Exploratory Visuals")
if st.checkbox("Histogram"):
hcol = st.selectbox("Variable", numeric_cols, key="hist")
st.plotly_chart(histogram_tool(csv_path, hcol), use_container_width=True)
if st.checkbox("Scatter Matrix"):
sel = st.multiselect("Choose columns", numeric_cols, default=numeric_cols[:3])
if sel:
st.plotly_chart(scatter_matrix_tool(csv_path, sel), use_container_width=True)
if st.checkbox("Correlation Heatmap"):
st.plotly_chart(corr_heatmap_tool(csv_path), use_container_width=True)
|