File size: 7,655 Bytes
309eec4
0a40e29
 
 
 
8a0173b
 
0a40e29
8a0173b
 
 
 
 
 
 
 
0a40e29
8a0173b
 
 
 
0a40e29
8a0173b
 
0a40e29
 
 
 
 
 
8a0173b
 
0a40e29
 
8a0173b
 
0a40e29
 
 
8a0173b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0a40e29
8a0173b
221fe0a
0a40e29
8a0173b
 
0a40e29
8a0173b
 
0a40e29
8a0173b
 
0a40e29
 
 
8a0173b
 
 
 
 
0a40e29
8a0173b
0a40e29
 
 
8a0173b
0a40e29
8a0173b
 
 
0a40e29
 
8a0173b
 
 
0a40e29
8a0173b
 
0a40e29
8a0173b
 
 
0a40e29
 
8a0173b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0a40e29
8a0173b
 
 
 
 
 
 
 
 
 
 
 
 
0a40e29
8a0173b
 
0a40e29
 
8a0173b
 
773f0cf
8a0173b
 
 
 
0a40e29
8a0173b
0a40e29
8a0173b
 
 
0a40e29
 
8a0173b
773f0cf
0a40e29
523228c
8a0173b
0a40e29
8a0173b
 
 
0a40e29
8a0173b
 
773f0cf
8a0173b
 
3acbc9c
8a0173b
 
d826a13
8a0173b
 
3acbc9c
8a0173b
 
 
0a40e29
 
 
8a0173b
 
 
0a40e29
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import streamlit as st
import pandas as pd
import numpy as np
import plotly.express as px
import matplotlib.pyplot as plt
from io import BytesIO
from sqlalchemy import create_engine
from statsmodels.tsa.arima.model import ARIMA
import openai

# ── CONFIG ───────────────────────────────────────────────────────────────────────
st.set_page_config(
    page_title="BizIntel AI Ultra",
    layout="wide",
    initial_sidebar_state="expanded"
)

# You must set OPENAI_API_KEY in your Streamlit Secrets
openai.api_key = st.secrets["OPENAI_API_KEY"]

# ── CACHEABLE HELPERS ────────────────────────────────────────────────────────────
@st.cache_data
def load_uploaded_file(uploaded):
    """Load CSV or Excel from memory into a DataFrame."""
    try:
        if uploaded.name.lower().endswith((".xls", ".xlsx")):
            return pd.read_excel(uploaded, engine="openpyxl")
        else:
            return pd.read_csv(uploaded)
    except Exception as e:
        st.error(f"⚠️ File parsing failed: {e}")
        return pd.DataFrame()

@st.cache_data
def list_db_tables(conn_str):
    engine = create_engine(conn_str)
    return engine.table_names()

@st.cache_data
def fetch_db_table(conn_str, table):
    engine = create_engine(conn_str)
    return pd.read_sql_table(table, engine)

# ── DATA NARRATIVE VIA OPENAI ───────────────────────────────────────────────────
def generate_data_narrative(df: pd.DataFrame) -> str:
    """Send a summary of df to OpenAI and return a polished narrative."""
    summary = df.describe(include="all").transpose().round(2).to_dict()
    prompt = (
        "You are a world-class data analyst. "
        "Below is a JSON summary of a dataset. "
        "Write a concise, professional narrative highlighting the top 5 business-critical insights, "
        "in bullet format:\n\n"
        f"{summary}\n\n"
    )
    resp = openai.ChatCompletion.create(
        model="gpt-4o-mini",  # or "gpt-4o", "gpt-4o-mini-high"
        messages=[{"role":"user","content":prompt}],
        temperature=0.3,
    )
    return resp.choices[0].message.content.strip()

# ── APP ─────────────────────────────────────────────────────────────────────────
st.title("πŸ“Š BizIntel AI Ultra – Advanced Analytics + Gemini 1.5 Pro")

# 1) Choose data source
source = st.radio("Select data source", ["Upload CSV / Excel", "Connect to SQL Database"])

df = pd.DataFrame()
if source == "Upload CSV / Excel":
    uploaded = st.file_uploader(
        "Drag & drop file here (≀500 MB) β€’ .csv, .xls, .xlsx",
        type=["csv","xls","xlsx"]
    )
    if uploaded:
        with st.spinner("Loading file…"):
            df = load_uploaded_file(uploaded)

else:
    engine = st.selectbox("DB engine", ["postgresql","mysql","mssql+pyodbc","oracle+cx_oracle"])
    conn_str = st.text_input("Connection string", placeholder="dialect+driver://user:pass@host/db")
    if conn_str:
        tables = list_db_tables(conn_str)
        table = st.selectbox("Choose table", tables)
        if table:
            with st.spinner(f"Fetching `{table}`…"):
                df = fetch_db_table(conn_str, table)

# 2) If we have data…
if not df.empty:
    st.success("βœ… Data loaded!")
    st.markdown("---")

    # 2a) Preview & summary metrics
    st.subheader("πŸ—‚ Data Preview & Overview")
    st.dataframe(df.head(5), use_container_width=True)

    r, c = df.shape
    missing_pct = (df.isna().sum().sum() / (r*c) * 100).round(1)
    col1, col2, col3 = st.columns(3)
    col1.metric("Rows", f"{r:,}")
    col2.metric("Cols", f"{c:,}")
    col3.metric("Missing %", f"{missing_pct}%")
    st.markdown("---")

    # 2b) Automated data narrative
    st.subheader("πŸ“ Data Narrative")
    with st.spinner("Generating insights…"):
        narrative = generate_data_narrative(df)
    st.markdown(narrative)

    # 2c) Optional EDA visuals
    st.subheader("πŸ”Ž Exploratory Visuals")
    num_cols = df.select_dtypes("number").columns.tolist()
    if st.checkbox("Show histogram"):
        col = st.selectbox("Histogram column", num_cols, key="hist")
        fig = px.histogram(df, x=col, nbins=30, title=f"Histogram of {col}")
        st.plotly_chart(fig, use_container_width=True)

    if st.checkbox("Show scatter matrix"):
        dims = num_cols[:6]
        fig = px.scatter_matrix(df[dims], dimensions=dims, title="Scatter Matrix")
        st.plotly_chart(fig, use_container_width=True)

    if st.checkbox("Show correlation heatmap"):
        corr = df[num_cols].corr()
        fig, ax = plt.subplots(figsize=(6,5))
        im = ax.imshow(corr, cmap="RdBu", vmin=-1, vmax=1)
        plt.xticks(range(len(corr)), corr.columns, rotation=45, ha="right")
        plt.yticks(range(len(corr)), corr.columns)
        plt.colorbar(im, ax=ax)
        st.pyplot(fig)

    # 3) Trend & forecast
    st.markdown("---")
    st.subheader("πŸ“ˆ Time-Series Trend & 90-Day Forecast")

    # pick columns
    dt_opts = [col for col in df.columns if pd.api.types.is_datetime64_any_dtype(df[col]) or df[col].dtype == "object"]
    date_col = st.selectbox("Date column", dt_opts)
    df[date_col] = pd.to_datetime(df[date_col], errors="coerce")
    metric_col = st.selectbox("Metric column", num_cols)

    ts = (
        df[[date_col, metric_col]]
        .dropna()
        .set_index(date_col)
        .sort_index()
        .loc[~df.index.duplicated(keep="first")]
    )

    # plot trend
    fig_trend = px.line(ts, y=metric_col, title=f"{metric_col} over Time", labels={"index":"Date"})
    st.plotly_chart(fig_trend, use_container_width=True)

    # forecast
    with st.spinner("Running ARIMA…"):
        try:
            model = ARIMA(ts, order=(1,1,1)).fit()
            future_idx = pd.date_range(start=ts.index.max(), periods=91, freq="D")[1:]
            pred = model.get_forecast(90).predicted_mean
            df_pred = pd.Series(pred.values, index=future_idx, name="Forecast")

            combo = pd.concat([ts[metric_col], df_pred], axis=1)
            fig_fc = px.line(
                combo,
                labels={metric_col:metric_col, "Forecast":"Forecast"},
                title=f"{metric_col} & 90-Day Forecast"
            )
            st.plotly_chart(fig_fc, use_container_width=True)

        except Exception as e:
            st.error(f"Forecast failed: {e}")

    # 4) Strategy download
    st.markdown("---")
    st.subheader("πŸš€ Actionable Strategy Brief")
    strategy_md = """
# BizIntel AI Ultra – Strategy Brief

**1. Data Quality First**  
Ensure all dates are parsed correctlyβ€”critical for any time-series modeling.

**2. Trend & Seasonality**  
Investigate the underlying patterns and adjust your operations calendar.

**3. Outlier Management**  
Flag and validate extreme observations to avoid skewed forecasts.

**4. Segment-Level Insights**  
Drill into regions or product lines for targeted interventions.

**5. Predict & Act**  
Leverage your 90-day projections for inventory, staffing, and marketing plans.
    """.strip()

    st.download_button(
        "πŸ“₯ Download Strategy (.md)",
        data=strategy_md,
        file_name="bizintel_strategy.md",
        mime="text/markdown"
    )