Spaces:
Runtime error
Runtime error
File size: 10,116 Bytes
19c2c87 31be05a 19c2c87 a791ee6 19c2c87 305d993 a791ee6 19c2c87 305d993 19c2c87 a791ee6 19c2c87 305d993 520f2f0 305d993 520f2f0 305d993 19c2c87 520f2f0 a791ee6 19c2c87 a791ee6 19c2c87 305d993 a791ee6 19c2c87 a791ee6 19c2c87 a791ee6 19c2c87 a791ee6 19c2c87 a791ee6 19c2c87 a791ee6 19c2c87 a791ee6 19c2c87 a791ee6 19c2c87 305d993 d3ccae5 520f2f0 d3ccae5 305d993 31be05a 520f2f0 305d993 19c2c87 305d993 19c2c87 a791ee6 520f2f0 305d993 31be05a 19c2c87 a791ee6 19c2c87 a791ee6 19c2c87 305d993 a791ee6 19c2c87 305d993 19c2c87 a791ee6 19c2c87 a791ee6 19c2c87 a791ee6 19c2c87 a791ee6 19c2c87 305d993 19c2c87 305d993 a791ee6 305d993 19c2c87 305d993 19c2c87 305d993 a791ee6 305d993 19c2c87 a791ee6 4290ea7 a791ee6 19c2c87 a791ee6 19c2c87 4290ea7 a791ee6 d3ccae5 a791ee6 19c2c87 305d993 19c2c87 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 |
import os
import io
import json
import csv
import asyncio
import xml.etree.ElementTree as ET
from typing import Any, Dict, Optional, Tuple, Union, List
import httpx
import gradio as gr
import torch
from dotenv import load_dotenv
from loguru import logger
from huggingface_hub import login
from openai import OpenAI
from reportlab.pdfgen import canvas
from transformers import (
AutoTokenizer,
AutoModelForSequenceClassification,
MarianMTModel,
MarianTokenizer,
)
import pandas as pd
import altair as alt
import spacy
import spacy.cli
import PyPDF2
###############################################################################
# 1) ENVIRONMENT & LOGGING #
###############################################################################
# Ensure spaCy model is downloaded (English Core Web)
try:
nlp = spacy.load("en_core_web_sm")
except OSError:
logger.info("Downloading SpaCy 'en_core_web_sm' model...")
spacy.cli.download("en_core_web_sm")
nlp = spacy.load("en_core_web_sm")
# Logging
logger.add("error_logs.log", rotation="1 MB", level="ERROR")
# Load environment variables
load_dotenv()
HUGGINGFACE_TOKEN = os.getenv("HF_TOKEN")
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
BIOPORTAL_API_KEY = os.getenv("BIOPORTAL_API_KEY") # For BioPortal integration
ENTREZ_EMAIL = os.getenv("ENTREZ_EMAIL")
if not HUGGINGFACE_TOKEN or not OPENAI_API_KEY:
logger.error("Missing Hugging Face or OpenAI credentials.")
raise ValueError("Missing credentials for Hugging Face or OpenAI.")
# Warn if BioPortal key is missing
if not BIOPORTAL_API_KEY:
logger.warning("BIOPORTAL_API_KEY is not set. BioPortal fetch calls will fail.")
# Hugging Face login
login(HUGGINGFACE_TOKEN)
# OpenAI
client = OpenAI(api_key=OPENAI_API_KEY)
# Device: CPU or GPU
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
logger.info(f"Using device: {device}")
###############################################################################
# 2) HUGGING FACE & TRANSLATION MODEL SETUP #
###############################################################################
MODEL_NAME = "mgbam/bert-base-finetuned-mgbam"
try:
model = AutoModelForSequenceClassification.from_pretrained(
MODEL_NAME, use_auth_token=HUGGINGFACE_TOKEN
).to(device)
tokenizer = AutoTokenizer.from_pretrained(
MODEL_NAME, use_auth_token=HUGGINGFACE_TOKEN
)
except Exception as e:
logger.error(f"Model load error: {e}")
raise
try:
translation_model_name = "Helsinki-NLP/opus-mt-en-fr"
translation_model = MarianMTModel.from_pretrained(
translation_model_name, use_auth_token=HUGGINGFACE_TOKEN
).to(device)
translation_tokenizer = MarianTokenizer.from_pretrained(
translation_model_name, use_auth_token=HUGGINGFACE_TOKEN
)
except Exception as e:
logger.error(f"Translation model load error: {e}")
raise
# Language map for translation
LANGUAGE_MAP: Dict[str, Tuple[str, str]] = {
"English to French": ("en", "fr"),
"French to English": ("fr", "en"),
}
###############################################################################
# 3) API ENDPOINTS & CONSTANTS #
###############################################################################
PUBMED_SEARCH_URL = "https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi"
PUBMED_FETCH_URL = "https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi"
EUROPE_PMC_BASE_URL = "https://www.ebi.ac.uk/europepmc/webservices/rest/search"
BIOPORTAL_API_BASE = "https://data.bioontology.org"
CROSSREF_API_URL = "https://api.crossref.org/works"
###############################################################################
# 4) HELPER FUNCTIONS #
###############################################################################
def safe_json_parse(text: str) -> Union[Dict[str, Any], None]:
"""Safely parse JSON."""
try:
return json.loads(text)
except json.JSONDecodeError as e:
logger.error(f"JSON parsing error: {e}")
return None
def parse_pubmed_xml(xml_data: str) -> List[Dict[str, Any]]:
"""Parse PubMed XML data into a structured list of articles."""
root = ET.fromstring(xml_data)
articles = []
for article in root.findall(".//PubmedArticle"):
pmid = article.findtext(".//PMID")
title = article.findtext(".//ArticleTitle")
abstract = article.findtext(".//AbstractText")
journal = article.findtext(".//Journal/Title")
pub_date_elem = article.find(".//JournalIssue/PubDate")
pub_date = None
if pub_date_elem is not None:
year = pub_date_elem.findtext("Year")
month = pub_date_elem.findtext("Month")
day = pub_date_elem.findtext("Day")
if year and month and day:
pub_date = f"{year}-{month}-{day}"
else:
pub_date = year
articles.append({
"PMID": pmid,
"Title": title,
"Abstract": abstract,
"Journal": journal,
"PublicationDate": pub_date,
})
return articles
def explain_clinical_results(results: str) -> str:
"""Generate a clinical explanation from raw results."""
try:
response = client.chat.completions.create(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": f"Explain the clinical test results:\n{results}"}],
max_tokens=500,
temperature=0.7,
)
return response.choices[0].message.content.strip()
except Exception as e:
logger.error(f"Explanation error: {e}")
return "Failed to generate explanation."
###############################################################################
# 6) CORE FUNCTIONS #
###############################################################################
def summarize_text(text: str) -> str:
"""OpenAI GPT-3.5 summarization."""
if not text.strip():
return "No text provided for summarization."
try:
response = client.chat.completions.create(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": f"Summarize this clinical data:\n{text}"}],
max_tokens=200,
temperature=0.7,
)
return response.choices[0].message.content.strip()
except Exception as e:
logger.error(f"Summarization error: {e}")
return "Summarization failed."
def generate_report(text: str, filename: str = "clinical_report.pdf") -> Optional[str]:
"""Generate a professional PDF report from the text."""
try:
if not text.strip():
logger.warning("No text provided for the report.")
c = canvas.Canvas(filename)
c.drawString(100, 750, "Clinical Research Report")
lines = text.split("\n")
y = 730
for line in lines:
if y < 50:
c.showPage()
y = 750
c.drawString(100, y, line)
y -= 15
c.save()
logger.info(f"Report generated: {filename}")
return filename
except Exception as e:
logger.error(f"Report generation error: {e}")
return None
def visualize_predictions(predictions: Dict[str, float]) -> alt.Chart:
"""Simple Altair bar chart to visualize classification probabilities."""
data = pd.DataFrame(list(predictions.items()), columns=["Label", "Probability"])
chart = (
alt.Chart(data)
.mark_bar()
.encode(
x=alt.X("Label:N", sort=None),
y="Probability:Q",
tooltip=["Label", "Probability"],
)
.properties(title="Prediction Probabilities", width=500, height=300)
)
return chart
###############################################################################
# 7) BUILDING THE GRADIO APP #
###############################################################################
with gr.Blocks() as demo:
gr.Markdown("# 🏥 AI-Driven Clinical Assistant")
gr.Markdown("""
**Highlights**:
- **Summarize** clinical text (OpenAI GPT-3.5)
- **Explain** clinical test results and trial outcomes
- **Generate** professional PDF reports
""")
text_input = gr.Textbox(label="Input Text", lines=5, placeholder="Enter clinical text or test results...")
action = gr.Radio(
[
"Summarize",
"Explain Clinical Results",
"Generate Report",
],
label="Select an Action",
)
output_text = gr.Textbox(label="Output", lines=8)
output_file = gr.File(label="Generated File")
submit_btn = gr.Button("Submit")
async def handle_action(
action: str,
txt: str,
report_fn: str
) -> Tuple[Optional[str], Optional[str]]:
"""Handle clinical actions based on the user's selection."""
try:
combined_text = txt.strip()
if action == "Summarize":
summary = summarize_text(combined_text)
return summary, None
elif action == "Explain Clinical Results":
explanation = explain_clinical_results(combined_text)
return explanation, None
elif action == "Generate Report":
path = generate_report(combined_text, report_fn)
msg = f"Report generated: {path}" if path else "Report generation failed."
return msg, path
return "Invalid action.", None
except Exception as e:
logger.error(f"Exception: {e}")
return f"Error: {str(e)}", None
submit_btn.click(
fn=handle_action,
inputs=[action, text_input, report_filename_input],
outputs=[output_text, output_file],
)
# Launch the Gradio interface
demo.launch(server_name="0.0.0.0", server_port=7860, share=True)
|