Spaces:
Runtime error
Runtime error
File size: 29,630 Bytes
19c2c87 31be05a 19c2c87 e852f8c 19c2c87 a791ee6 19c2c87 305d993 a791ee6 19c2c87 305d993 19c2c87 a791ee6 19c2c87 305d993 520f2f0 305d993 520f2f0 305d993 19c2c87 520f2f0 a791ee6 19c2c87 a791ee6 19c2c87 305d993 a791ee6 19c2c87 a791ee6 19c2c87 a791ee6 19c2c87 a791ee6 19c2c87 a791ee6 19c2c87 a791ee6 19c2c87 a791ee6 19c2c87 a791ee6 19c2c87 305d993 d3ccae5 520f2f0 d3ccae5 305d993 31be05a 520f2f0 305d993 19c2c87 305d993 19c2c87 e852f8c 520f2f0 305d993 31be05a 19c2c87 a791ee6 19c2c87 a791ee6 19c2c87 305d993 e852f8c 19c2c87 305d993 19c2c87 e852f8c 19c2c87 a791ee6 19c2c87 a791ee6 19c2c87 a791ee6 19c2c87 a791ee6 19c2c87 305d993 19c2c87 305d993 a791ee6 305d993 19c2c87 305d993 19c2c87 e852f8c 305d993 e852f8c 305d993 19c2c87 a791ee6 e852f8c 4290ea7 a791ee6 e852f8c a791ee6 e852f8c a791ee6 e852f8c 19c2c87 e852f8c 19c2c87 e852f8c 19c2c87 4290ea7 e852f8c a791ee6 e852f8c a791ee6 e852f8c a791ee6 e852f8c a791ee6 e852f8c a791ee6 e852f8c a791ee6 e852f8c a791ee6 e852f8c a791ee6 e852f8c a791ee6 e852f8c a791ee6 d3ccae5 a791ee6 e852f8c 19c2c87 305d993 19c2c87 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 |
import os
import io
import json
import csv
import asyncio
import xml.etree.ElementTree as ET
from typing import Any, Dict, Optional, Tuple, Union, List
import httpx
import gradio as gr
import torch
from dotenv import load_dotenv
from loguru import logger
from huggingface_hub import login
from openai import OpenAI
from reportlab.pdfgen import canvas
from transformers import (
AutoTokenizer,
AutoModelForSequenceClassification,
MarianMTModel,
MarianTokenizer,
)
import pandas as pd
import altair as alt
import spacy
import spacy.cli
import PyPDF2
###############################################################################
# 1) ENVIRONMENT & LOGGING #
###############################################################################
# Ensure spaCy model is downloaded (English Core Web)
try:
nlp = spacy.load("en_core_web_sm")
except OSError:
logger.info("Downloading SpaCy 'en_core_web_sm' model...")
spacy.cli.download("en_core_web_sm")
nlp = spacy.load("en_core_web_sm")
# Logging
logger.add("error_logs.log", rotation="1 MB", level="ERROR")
# Load environment variables
load_dotenv()
HUGGINGFACE_TOKEN = os.getenv("HF_TOKEN")
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
BIOPORTAL_API_KEY = os.getenv("BIOPORTAL_API_KEY") # For BioPortal integration
ENTREZ_EMAIL = os.getenv("ENTREZ_EMAIL")
if not HUGGINGFACE_TOKEN or not OPENAI_API_KEY:
logger.error("Missing Hugging Face or OpenAI credentials.")
raise ValueError("Missing credentials for Hugging Face or OpenAI.")
# Warn if BioPortal key is missing
if not BIOPORTAL_API_KEY:
logger.warning("BIOPORTAL_API_KEY is not set. BioPortal fetch calls will fail.")
# Hugging Face login
login(HUGGINGFACE_TOKEN)
# OpenAI
client = OpenAI(api_key=OPENAI_API_KEY)
# Device: CPU or GPU
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
logger.info(f"Using device: {device}")
###############################################################################
# 2) HUGGING FACE & TRANSLATION MODEL SETUP #
###############################################################################
MODEL_NAME = "mgbam/bert-base-finetuned-mgbam"
try:
model = AutoModelForSequenceClassification.from_pretrained(
MODEL_NAME, use_auth_token=HUGGINGFACE_TOKEN
).to(device)
tokenizer = AutoTokenizer.from_pretrained(
MODEL_NAME, use_auth_token=HUGGINGFACE_TOKEN
)
except Exception as e:
logger.error(f"Model load error: {e}")
raise
try:
translation_model_name = "Helsinki-NLP/opus-mt-en-fr"
translation_model = MarianMTModel.from_pretrained(
translation_model_name, use_auth_token=HUGGINGFACE_TOKEN
).to(device)
translation_tokenizer = MarianTokenizer.from_pretrained(
translation_model_name, use_auth_token=HUGGINGFACE_TOKEN
)
except Exception as e:
logger.error(f"Translation model load error: {e}")
raise
# Language map for translation
LANGUAGE_MAP: Dict[str, Tuple[str, str]] = {
"English to French": ("en", "fr"),
"French to English": ("fr", "en"),
}
###############################################################################
# 3) API ENDPOINTS & CONSTANTS #
###############################################################################
PUBMED_SEARCH_URL = "https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi"
PUBMED_FETCH_URL = "https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi"
EUROPE_PMC_BASE_URL = "https://www.ebi.ac.uk/europepmc/webservices/rest/search"
BIOPORTAL_API_BASE = "https://data.bioontology.org"
CROSSREF_API_URL = "https://api.crossref.org/works"
###############################################################################
# 4) HELPER FUNCTIONS #
###############################################################################
def safe_json_parse(text: str) -> Union[Dict[str, Any], None]:
"""Safely parse JSON."""
try:
return json.loads(text)
except json.JSONDecodeError as e:
logger.error(f"JSON parsing error: {e}")
return None
def parse_pubmed_xml(xml_data: str) -> List[Dict[str, Any]]:
"""Parse PubMed XML data into a structured list of articles."""
root = ET.fromstring(xml_data)
articles = []
for article in root.findall(".//PubmedArticle"):
pmid = article.findtext(".//PMID")
title = article.findtext(".//ArticleTitle")
abstract = article.findtext(".//AbstractText")
journal = article.findtext(".//Journal/Title")
pub_date_elem = article.find(".//JournalIssue/PubDate")
pub_date = None
if pub_date_elem is not None:
year = pub_date_elem.findtext("Year")
month = pub_date_elem.findtext("Month")
day = pub_date_elem.findtext("Day")
if year and month and day:
pub_date = f"{year}-{month}-{day}"
else:
pub_date = year
articles.append({
"PMID": pmid,
"Title": title,
"Abstract": abstract,
"Journal": journal,
"PublicationDate": pub_date,
})
return articles
###############################################################################
# 5) ASYNC FETCH FUNCTIONS #
###############################################################################
async def fetch_articles_by_nct_id(nct_id: str) -> Dict[str, Any]:
params = {"query": nct_id, "format": "json"}
async with httpx.AsyncClient() as client_http:
try:
resp = await client_http.get(EUROPE_PMC_BASE_URL, params=params)
resp.raise_for_status()
return resp.json()
except Exception as e:
logger.error(f"Error fetching articles for {nct_id}: {e}")
return {"error": str(e)}
async def fetch_articles_by_query(query_params: str) -> Dict[str, Any]:
"""Europe PMC query via JSON input."""
parsed_params = safe_json_parse(query_params)
if not parsed_params or not isinstance(parsed_params, dict):
return {"error": "Invalid JSON."}
query_string = " AND ".join(f"{k}:{v}" for k, v in parsed_params.items())
req_params = {"query": query_string, "format": "json"}
async with httpx.AsyncClient() as client_http:
try:
resp = await client_http.get(EUROPE_PMC_BASE_URL, params=req_params)
resp.raise_for_status()
return resp.json()
except Exception as e:
logger.error(f"Error fetching articles: {e}")
return {"error": str(e)}
async def fetch_pubmed_by_query(query_params: str) -> Dict[str, Any]:
parsed_params = safe_json_parse(query_params)
if not parsed_params or not isinstance(parsed_params, dict):
return {"error": "Invalid JSON for PubMed."}
search_params = {
"db": "pubmed",
"retmode": "json",
"email": ENTREZ_EMAIL,
"retmax": parsed_params.get("retmax", "10"),
"term": parsed_params.get("term", ""),
}
async with httpx.AsyncClient() as client_http:
try:
# Search PubMed
search_resp = await client_http.get(PUBMED_SEARCH_URL, params=search_params)
search_resp.raise_for_status()
data = search_resp.json()
id_list = data.get("esearchresult", {}).get("idlist", [])
if not id_list:
return {"result": ""}
# Fetch PubMed
fetch_params = {
"db": "pubmed",
"id": ",".join(id_list),
"retmode": "xml",
"email": ENTREZ_EMAIL,
}
fetch_resp = await client_http.get(PUBMED_FETCH_URL, params=fetch_params)
fetch_resp.raise_for_status()
return {"result": fetch_resp.text}
except Exception as e:
logger.error(f"Error fetching PubMed articles: {e}")
return {"error": str(e)}
async def fetch_crossref_by_query(query_params: str) -> Dict[str, Any]:
parsed_params = safe_json_parse(query_params)
if not parsed_params or not isinstance(parsed_params, dict):
return {"error": "Invalid JSON for Crossref."}
async with httpx.AsyncClient() as client_http:
try:
resp = await client_http.get(CROSSREF_API_URL, params=parsed_params)
resp.raise_for_status()
return resp.json()
except Exception as e:
logger.error(f"Error fetching Crossref data: {e}")
return {"error": str(e)}
async def fetch_bioportal_by_query(query_params: str) -> Dict[str, Any]:
"""
BioPortal fetch for medical ontologies/terminologies.
Expects JSON like: {"q": "cancer"}
See: https://data.bioontology.org/documentation
"""
if not BIOPORTAL_API_KEY:
return {"error": "No BioPortal API Key set."}
parsed_params = safe_json_parse(query_params)
if not parsed_params or not isinstance(parsed_params, dict):
return {"error": "Invalid JSON for BioPortal."}
search_term = parsed_params.get("q", "")
if not search_term:
return {"error": "No 'q' found in JSON. Provide a search term."}
url = f"{BIOPORTAL_API_BASE}/search"
headers = {"Authorization": f"apikey token={BIOPORTAL_API_KEY}"}
req_params = {"q": search_term}
async with httpx.AsyncClient() as client_http:
try:
resp = await client_http.get(url, params=req_params, headers=headers)
resp.raise_for_status()
return resp.json()
except Exception as e:
logger.error(f"Error fetching BioPortal data: {e}")
return {"error": str(e)}
###############################################################################
# 6) CORE FUNCTIONS #
###############################################################################
def summarize_text(text: str) -> str:
"""OpenAI GPT-3.5 summarization."""
if not text.strip():
return "No text provided for summarization."
try:
response = client.chat.completions.create(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": f"Summarize this clinical data:\n{text}"}],
max_tokens=200,
temperature=0.7,
)
return response.choices[0].message.content.strip()
except Exception as e:
logger.error(f"Summarization error: {e}")
return "Summarization failed."
def predict_outcome(text: str) -> Union[Dict[str, float], str]:
"""Predict outcomes (classification) using a fine-tuned BERT model."""
if not text.strip():
return "No text provided for prediction."
try:
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
inputs = {k: v.to(device) for k, v in inputs.items()}
with torch.no_grad():
outputs = model(**inputs)
probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1)[0]
return {f"Label {i+1}": float(prob.item()) for i, prob in enumerate(probabilities)}
except Exception as e:
logger.error(f"Prediction error: {e}")
return "Prediction failed."
def generate_report(text: str, filename: str = "clinical_report.pdf") -> Optional[str]:
"""Generate a professional PDF report from the text."""
try:
if not text.strip():
logger.warning("No text provided for the report.")
c = canvas.Canvas(filename)
c.drawString(100, 750, "Clinical Research Report")
lines = text.split("\n")
y = 730
for line in lines:
if y < 50:
c.showPage()
y = 750
c.drawString(100, y, line)
y -= 15
c.save()
logger.info(f"Report generated: {filename}")
return filename
except Exception as e:
logger.error(f"Report generation error: {e}")
return None
def visualize_predictions(predictions: Dict[str, float]) -> alt.Chart:
"""Simple Altair bar chart to visualize classification probabilities."""
data = pd.DataFrame(list(predictions.items()), columns=["Label", "Probability"])
chart = (
alt.Chart(data)
.mark_bar()
.encode(
x=alt.X("Label:N", sort=None),
y="Probability:Q",
tooltip=["Label", "Probability"],
)
.properties(title="Prediction Probabilities", width=500, height=300)
)
return chart
def translate_text(text: str, translation_option: str) -> str:
"""Translate text between English and French via MarianMT."""
if not text.strip():
return "No text provided for translation."
try:
if translation_option not in LANGUAGE_MAP:
return "Unsupported translation option."
inputs = translation_tokenizer(text, return_tensors="pt", padding=True).to(device)
translated_tokens = translation_model.generate(**inputs)
return translation_tokenizer.decode(translated_tokens[0], skip_special_tokens=True)
except Exception as e:
logger.error(f"Translation error: {e}")
return "Translation failed."
def perform_named_entity_recognition(text: str) -> str:
"""NER using spaCy (en_core_web_sm)."""
if not text.strip():
return "No text provided for NER."
try:
doc = nlp(text)
entities = [(ent.text, ent.label_) for ent in doc.ents]
if not entities:
return "No named entities found."
return "\n".join(f"{t} -> {lbl}" for t, lbl in entities)
except Exception as e:
logger.error(f"NER error: {e}")
return "NER failed."
###############################################################################
# 7) FILE PARSING (TXT, PDF, CSV, XLS) #
###############################################################################
def parse_pdf_file_as_str(file_up: gr.File) -> str:
"""Read PDF via PyPDF2. Attempt local path, else read from memory."""
pdf_path = file_up.name
if os.path.isfile(pdf_path):
with open(pdf_path, "rb") as f:
reader = PyPDF2.PdfReader(f)
return "\n".join(page.extract_text() or "" for page in reader.pages)
else:
if not hasattr(file_up, "file"):
raise ValueError("No .file attribute found for PDF.")
pdf_bytes = file_up.file.read()
reader = PyPDF2.PdfReader(io.BytesIO(pdf_bytes))
return "\n".join(page.extract_text() or "" for page in reader.pages)
def parse_text_file_as_str(file_up: gr.File) -> str:
"""Read .txt from path or fallback to memory."""
path = file_up.name
if os.path.isfile(path):
with open(path, "rb") as f:
return f.read().decode("utf-8", errors="replace")
else:
if not hasattr(file_up, "file"):
raise ValueError("No .file attribute for TXT.")
return file_up.file.read().decode("utf-8", errors="replace")
def parse_csv_file_to_df(file_up: gr.File) -> pd.DataFrame:
"""
Attempt multiple encodings for CSV: utf-8, utf-8-sig, latin1, ISO-8859-1.
"""
path = file_up.name
if os.path.isfile(path):
for enc in ["utf-8", "utf-8-sig", "latin1", "ISO-8859-1"]:
try:
return pd.read_csv(path, encoding=enc)
except UnicodeDecodeError:
logger.warning(f"CSV parse failed (enc={enc}). Trying next...")
except Exception as e:
logger.warning(f"CSV parse error (enc={enc}): {e}")
raise ValueError("Could not parse local CSV with known encodings.")
else:
if not hasattr(file_up, "file"):
raise ValueError("No .file attribute for CSV.")
raw_bytes = file_up.file.read()
for enc in ["utf-8", "utf-8-sig", "latin1", "ISO-8859-1"]:
try:
text_decoded = raw_bytes.decode(enc, errors="replace")
from io import StringIO
return pd.read_csv(StringIO(text_decoded))
except UnicodeDecodeError:
logger.warning(f"CSV in-memory parse failed (enc={enc}). Next...")
except Exception as e:
logger.warning(f"In-memory CSV error (enc={enc}): {e}")
raise ValueError("Could not parse in-memory CSV with known encodings.")
def parse_excel_file_to_df(file_up: gr.File) -> pd.DataFrame:
"""Read Excel from local path or memory (openpyxl)."""
path = file_up.name
if os.path.isfile(path):
return pd.read_excel(path, engine="openpyxl")
else:
if not hasattr(file_up, "file"):
raise ValueError("No .file attribute for Excel.")
excel_bytes = file_up.file.read()
return pd.read_excel(io.BytesIO(excel_bytes), engine="openpyxl")
###############################################################################
# 8) BUILDING THE GRADIO APP #
###############################################################################
with gr.Blocks() as demo:
gr.Markdown("# π₯ AI-Driven Clinical Assistant (No EDA)")
gr.Markdown("""
**Highlights**:
- **Summarize** clinical text (OpenAI GPT-3.5)
- **Predict** with a specialized BERT-based model
- **Translate** (English β French)
- **Named Entity Recognition** (spaCy)
- **Fetch** from PubMed, Crossref, Europe PMC, and **BioPortal**
- **Generate** professional PDF reports
*Disclaimer*: This is a research demo, **not** a medical device.
""")
with gr.Row():
text_input = gr.Textbox(label="Input Text", lines=5, placeholder="Enter clinical text or notes...")
file_input = gr.File(
label="Upload File (txt/csv/xls/xlsx/pdf)",
file_types=[".txt", ".csv", ".xls", ".xlsx", ".pdf"]
)
action = gr.Radio(
[
"Summarize",
"Predict Outcome",
"Generate Report",
"Translate",
"Perform Named Entity Recognition",
"Fetch Clinical Studies",
"Fetch PubMed Articles (Legacy)",
"Fetch PubMed by Query",
"Fetch Crossref by Query",
"Fetch BioPortal by Query",
],
label="Select an Action",
)
translation_option = gr.Dropdown(
choices=list(LANGUAGE_MAP.keys()),
label="Translation Option",
value="English to French"
)
query_params_input = gr.Textbox(
label="Query Params (JSON)",
placeholder='{"term": "cancer"} or {"q": "cancer"} for BioPortal'
)
nct_id_input = gr.Textbox(label="NCT ID")
report_filename_input = gr.Textbox(label="Report Filename", value="clinical_report.pdf")
export_format = gr.Dropdown(choices=["None", "CSV", "JSON"], label="Export Format")
# Outputs
output_text = gr.Textbox(label="Output", lines=8)
with gr.Row():
output_chart = gr.Plot(label="Chart 1")
output_chart2 = gr.Plot(label="Chart 2")
output_file = gr.File(label="Generated File")
submit_btn = gr.Button("Submit")
################################################################
# 9) MAIN ACTION HANDLER (ASYNC) #
################################################################
import traceback
async def handle_action(
action: str,
txt: str,
file_up: gr.File,
translation_opt: str,
query_str: str,
nct_id: str,
report_fn: str,
exp_fmt: str
) -> Tuple[Optional[str], Optional[Any], Optional[Any], Optional[str]]:
"""
Master function to handle user actions.
Returns a 4-tuple mapped to (output_text, output_chart, output_chart2, output_file).
"""
try:
combined_text = txt.strip()
# 1) If user uploaded a file, parse minimal text from .txt/.pdf here
if file_up is not None:
ext = os.path.splitext(file_up.name)[1].lower()
if ext == ".txt":
try:
txt_data = parse_text_file_as_str(file_up)
combined_text += "\n" + txt_data
except Exception as e:
return f"TXT parse error: {e}", None, None, None
elif ext == ".pdf":
try:
pdf_data = parse_pdf_file_as_str(file_up)
combined_text += "\n" + pdf_data
except Exception as e:
return f"PDF parse error: {e}", None, None, None
# CSV and Excel are parsed *within* certain actions (e.g. Summarize)
# 2) Branch by action
if action == "Summarize":
if file_up:
fx = file_up.name.lower()
if fx.endswith(".csv"):
try:
df_csv = parse_csv_file_to_df(file_up)
combined_text += "\n" + df_csv.to_csv(index=False)
except Exception as e:
return f"CSV parse error (Summarize): {e}", None, None, None
elif fx.endswith((".xls", ".xlsx")):
try:
df_xl = parse_excel_file_to_df(file_up)
combined_text += "\n" + df_xl.to_csv(index=False)
except Exception as e:
return f"Excel parse error (Summarize): {e}", None, None, None
summary = summarize_text(combined_text)
return summary, None, None, None
elif action == "Predict Outcome":
if file_up:
fx = file_up.name.lower()
if fx.endswith(".csv"):
try:
df_csv = parse_csv_file_to_df(file_up)
combined_text += "\n" + df_csv.to_csv(index=False)
except Exception as e:
return f"CSV parse error (Predict): {e}", None, None, None
elif fx.endswith((".xls", ".xlsx")):
try:
df_xl = parse_excel_file_to_df(file_up)
combined_text += "\n" + df_xl.to_csv(index=False)
except Exception as e:
return f"Excel parse error (Predict): {e}", None, None, None
preds = predict_outcome(combined_text)
if isinstance(preds, dict):
chart = visualize_predictions(preds)
return json.dumps(preds, indent=2), chart, None, None
return preds, None, None, None
elif action == "Generate Report":
if file_up:
fx = file_up.name.lower()
if fx.endswith(".csv"):
try:
df_csv = parse_csv_file_to_df(file_up)
combined_text += "\n" + df_csv.to_csv(index=False)
except Exception as e:
return f"CSV parse error (Report): {e}", None, None, None
elif fx.endswith((".xls", ".xlsx")):
try:
df_xl = parse_excel_file_to_df(file_up)
combined_text += "\n" + df_xl.to_csv(index=False)
except Exception as e:
return f"Excel parse error (Report): {e}", None, None, None
path = generate_report(combined_text, report_fn)
msg = f"Report generated: {path}" if path else "Report generation failed."
return msg, None, None, path
elif action == "Translate":
if file_up:
fx = file_up.name.lower()
if fx.endswith(".csv"):
try:
df_csv = parse_csv_file_to_df(file_up)
combined_text += "\n" + df_csv.to_csv(index=False)
except Exception as e:
return f"CSV parse error (Translate): {e}", None, None, None
elif fx.endswith((".xls", ".xlsx")):
try:
df_xl = parse_excel_file_to_df(file_up)
combined_text += "\n" + df_xl.to_csv(index=False)
except Exception as e:
return f"Excel parse error (Translate): {e}", None, None, None
translated = translate_text(combined_text, translation_opt)
return translated, None, None, None
elif action == "Perform Named Entity Recognition":
if file_up:
fx = file_up.name.lower()
if fx.endswith(".csv"):
try:
df_csv = parse_csv_file_to_df(file_up)
combined_text += "\n" + df_csv.to_csv(index=False)
except Exception as e:
return f"CSV parse error (NER): {e}", None, None, None
elif fx.endswith((".xls", ".xlsx")):
try:
df_xl = parse_excel_file_to_df(file_up)
combined_text += "\n" + df_xl.to_csv(index=False)
except Exception as e:
return f"Excel parse error (NER): {e}", None, None, None
ner_result = perform_named_entity_recognition(combined_text)
return ner_result, None, None, None
elif action == "Fetch Clinical Studies":
if nct_id:
result = await fetch_articles_by_nct_id(nct_id)
elif query_str:
result = await fetch_articles_by_query(query_str)
else:
return "Provide either an NCT ID or valid query parameters.", None, None, None
articles = result.get("resultList", {}).get("result", [])
if not articles:
return "No articles found.", None, None, None
formatted = "\n\n".join(
f"Title: {a.get('title')}\nJournal: {a.get('journalTitle')} ({a.get('pubYear')})"
for a in articles
)
return formatted, None, None, None
elif action in ["Fetch PubMed Articles (Legacy)", "Fetch PubMed by Query"]:
pubmed_result = await fetch_pubmed_by_query(query_str)
xml_data = pubmed_result.get("result")
if xml_data:
articles = parse_pubmed_xml(xml_data)
if not articles:
return "No articles found.", None, None, None
formatted = "\n\n".join(
f"{a['Title']} - {a['Journal']} ({a['PublicationDate']})"
for a in articles if a['Title']
)
return formatted if formatted else "No articles found.", None, None, None
return "No articles found or error in fetching PubMed data.", None, None, None
elif action == "Fetch Crossref by Query":
crossref_result = await fetch_crossref_by_query(query_str)
items = crossref_result.get("message", {}).get("items", [])
if not items:
return "No results found.", None, None, None
crossref_formatted = "\n\n".join(
f"Title: {it.get('title', ['No title'])[0]}, DOI: {it.get('DOI')}"
for it in items
)
return crossref_formatted, None, None, None
elif action == "Fetch BioPortal by Query":
bp_result = await fetch_bioportal_by_query(query_str)
collection = bp_result.get("collection", [])
if not collection:
return "No BioPortal results found.", None, None, None
# Format listing
formatted = "\n\n".join(
f"Label: {col.get('prefLabel')}, ID: {col.get('@id')}"
for col in collection
)
return formatted, None, None, None
# Fallback
return "Invalid action.", None, None, None
except Exception as ex:
# Catch all exceptions, log, and return traceback to 'output_text'
tb_str = traceback.format_exc()
logger.error(f"Exception in handle_action:\n{tb_str}")
return f"Traceback:\n{tb_str}", None, None, None
submit_btn.click(
fn=handle_action,
inputs=[action, text_input, file_input, translation_option, query_params_input, nct_id_input, report_filename_input, export_format],
outputs=[output_text, output_chart, output_chart2, output_file],
)
# Launch the Gradio interface
demo.launch(server_name="0.0.0.0", server_port=7860, share=True)
|