File size: 7,929 Bytes
3987ef0
978c4cf
3987ef0
 
 
 
 
 
31dadea
f5ee342
517de74
9efa522
 
517de74
31dadea
f5ee342
517de74
 
 
978c4cf
42d374e
 
 
517de74
42d374e
517de74
42d374e
 
 
 
 
 
 
 
 
978c4cf
3987ef0
 
 
978c4cf
3987ef0
 
 
978c4cf
9efa522
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42d374e
 
3987ef0
517de74
978c4cf
31dadea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42d374e
 
517de74
 
 
 
42d374e
 
517de74
 
42d374e
517de74
42d374e
 
 
 
 
 
 
9efa522
42d374e
 
517de74
42d374e
 
9efa522
c1cd51c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
978c4cf
42d374e
3987ef0
42d374e
 
3987ef0
42d374e
517de74
42d374e
 
 
 
 
 
 
 
 
 
 
 
978c4cf
3987ef0
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
# app.py

import os
import streamlit as st
from fastapi import FastAPI
from fastapi.middleware.cors import CORSMiddleware
from mcp.orchestrator import orchestrate_search, answer_ai_question
from mcp.schemas import UnifiedSearchInput, UnifiedSearchResult
from mcp.workspace import get_workspace, save_query
from mcp.knowledge_graph import build_knowledge_graph
from pathlib import Path
import pandas as pd
from fpdf import FPDF
import asyncio
import plotly.express as px
import streamlit.components.v1 as components

ROOT_DIR = Path(__file__).resolve().parent
LOGO_PATH = ROOT_DIR / "assets" / "logo.png"

# --- FASTAPI BACKEND ---

api = FastAPI(
    title="MedGenesis MCP Server",
    version="2.0.0",
    description="MedGenesis AI unifies PubMed, ArXiv, OpenFDA, UMLS, and GPT-4o into a single biomedical intelligence platform."
)

api.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

@api.post("/unified_search", response_model=UnifiedSearchResult)
async def unified_search_endpoint(data: UnifiedSearchInput):
    return await orchestrate_search(data.query)

@api.post("/ask_ai")
async def ask_ai_endpoint(question: str, context: str = ""):
    return await answer_ai_question(question, context)

# --- PDF Export Utility ---

def generate_pdf(papers):
    pdf = FPDF()
    pdf.add_page()
    pdf.set_font("Arial", size=12)
    pdf.cell(200, 10, txt="MedGenesis AI - Search Results", ln=True, align='C')
    pdf.ln(10)
    for i, paper in enumerate(papers, 1):
        pdf.set_font("Arial", style="B", size=12)
        pdf.multi_cell(0, 10, f"{i}. {paper['title']}")
        pdf.set_font("Arial", style="", size=10)
        pdf.multi_cell(0, 8, f"Authors: {paper['authors']}\nLink: {paper['link']}\nSummary: {paper['summary']}\n")
        pdf.ln(2)
    pdf_out = pdf.output(dest='S').encode('latin-1')
    return pdf_out

# --- STREAMLIT UI ---

def render_ui():
    st.set_page_config(page_title="MedGenesis AI", layout="wide")

    # --- SIDEBAR WORKSPACE ---
    with st.sidebar:
        st.header("πŸ—‚οΈ Your Workspace")
        saved_queries = get_workspace()
        if saved_queries:
            for i, item in enumerate(saved_queries, 1):
                with st.expander(f"{i}. {item['query']}"):
                    st.write("**AI Summary:**", item["result"]["ai_summary"])
                    st.write("**First Paper:**", item["result"]["papers"][0]["title"] if item["result"]["papers"] else "None")
                    df = pd.DataFrame(item["result"]["papers"])
                    st.download_button(
                        label="πŸ“₯ Download as CSV",
                        data=df.to_csv(index=False),
                        file_name=f"workspace_query_{i}.csv",
                        mime="text/csv",
                    )
        else:
            st.info("Run a search and save it here!")

    # --- MAIN APP HEADER ---
    col1, col2 = st.columns([0.15, 0.85])
    with col1:
        if LOGO_PATH.exists():
            st.image(str(LOGO_PATH), width=100)
        else:
            st.markdown("🧬")
    with col2:
        st.markdown("""
            ## 🧬 **MedGenesis AI** – Biomedical Research Reimagined  
            *Unified Intelligence from PubMed, ArXiv, OpenFDA, UMLS, and GPT-4o*
        """)
        st.caption("Created by Oluwafemi Idiakhoa | Hugging Face Spaces")

    st.markdown("---")

    # Unified Semantic Search
    st.subheader("πŸ” Unified Semantic Search")
    query = st.text_input("Enter your biomedical research question:", placeholder="e.g. New treatments for glioblastoma using CRISPR")

    results = None
    if st.button("Run Search πŸš€"):
        with st.spinner("Thinking... Gathering and analyzing data across 5 systems..."):
            results = asyncio.run(orchestrate_search(query))
            st.success("Search complete! πŸŽ‰")

    if results:
        tabs = st.tabs(["πŸ“ Results", "πŸ—ΊοΈ Knowledge Graph", "πŸ“Š Visualizations"])

        # --- TAB 1: Results ---
        with tabs[0]:
            for i, paper in enumerate(results["papers"], 1):
                st.markdown(f"**{i}. [{paper['title']}]({paper['link']})**  \n*{paper['authors']}* ({paper['source']})")
                st.markdown(f"<div style='font-size: 0.9em; color: gray'>{paper['summary']}</div>", unsafe_allow_html=True)

            # Save to workspace (user-initiated, for clarity)
            if st.button("Save this search to Workspace"):
                save_query(query, results)
                st.success("Saved to your workspace!")

            # Export as CSV
            if results["papers"]:
                df = pd.DataFrame(results["papers"])
                csv = df.to_csv(index=False)
                st.download_button(
                    label="πŸ“₯ Download results as CSV",
                    data=csv,
                    file_name="medgenesis_results.csv",
                    mime="text/csv",
                )

            # Export as PDF
            if results["papers"]:
                pdf_bytes = generate_pdf(results["papers"])
                st.download_button(
                    label="πŸ“„ Download results as PDF",
                    data=pdf_bytes,
                    file_name="medgenesis_results.pdf",
                    mime="application/pdf",
                )

            # UMLS Concepts
            st.markdown("### 🧠 Biomedical Concept Enrichment (UMLS)")
            for concept in results["umls"]:
                if concept["cui"]:
                    st.markdown(f"πŸ”Ή **{concept['name']}** (CUI: `{concept['cui']}`): {concept['definition'] or 'No definition available'}")

            # Drug Safety
            st.markdown("### πŸ’Š Drug Safety Insights (OpenFDA)")
            for drug_report in results["drug_safety"]:
                if drug_report:
                    st.json(drug_report)

            # AI Summary
            st.markdown("### πŸ€– AI-Powered Summary")
            st.info(results["ai_summary"])

            # Suggested Reading
            st.markdown("### πŸ“– Suggested Links")
            for link in results["suggested_reading"]:
                st.write(f"- {link}")

        # --- TAB 2: Knowledge Graph ---
        with tabs[1]:
            st.markdown("#### Explore Connections")
            kg_html_path = build_knowledge_graph(results["papers"], results["umls"], results["drug_safety"])
            with open(kg_html_path, 'r', encoding='utf-8') as f:
                kg_html = f.read()
            components.html(kg_html, height=600)

        # --- TAB 3: Visualizations ---
        with tabs[2]:
            pub_years = [p["published"] for p in results["papers"] if p.get("published")]
            if pub_years:
                fig = px.histogram(pub_years, nbins=10, title="Publication Year Distribution")
                st.plotly_chart(fig)
            # Placeholder for more charts

    # Follow-up AI Q&A
    st.markdown("---")
    st.subheader("πŸ’¬ Ask AI a Follow-up Question")
    follow_up = st.text_input("What do you want to ask based on the above?", placeholder="e.g. What's the most promising therapy?")
    if st.button("Ask AI"):
        with st.spinner("Analyzing and responding..."):
            ai_answer = asyncio.run(answer_ai_question(follow_up, context=query))
            st.success("AI's Response:")
            st.write(ai_answer["answer"])

    # Footer
    st.markdown("---")
    st.markdown(
        "<div style='text-align: center; font-size: 0.9em;'>"
        "✨ Built with ❀️ by <strong>Oluwafemi Idiakhoa</strong> β€’ Powered by FastAPI, Streamlit, Hugging Face, OpenAI, UMLS, OpenFDA, and NCBI</div>",
        unsafe_allow_html=True
    )

# --- MAIN ENTRY ---

if __name__ == "__main__":
    import sys
    if "runserver" in sys.argv:
        import uvicorn
        uvicorn.run(api, host="0.0.0.0", port=7860)
    else:
        render_ui()