MCP_Res / app.py
mgbam's picture
Update app.py
c1cd51c verified
raw
history blame
7.93 kB
# app.py
import os
import streamlit as st
from fastapi import FastAPI
from fastapi.middleware.cors import CORSMiddleware
from mcp.orchestrator import orchestrate_search, answer_ai_question
from mcp.schemas import UnifiedSearchInput, UnifiedSearchResult
from mcp.workspace import get_workspace, save_query
from mcp.knowledge_graph import build_knowledge_graph
from pathlib import Path
import pandas as pd
from fpdf import FPDF
import asyncio
import plotly.express as px
import streamlit.components.v1 as components
ROOT_DIR = Path(__file__).resolve().parent
LOGO_PATH = ROOT_DIR / "assets" / "logo.png"
# --- FASTAPI BACKEND ---
api = FastAPI(
title="MedGenesis MCP Server",
version="2.0.0",
description="MedGenesis AI unifies PubMed, ArXiv, OpenFDA, UMLS, and GPT-4o into a single biomedical intelligence platform."
)
api.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
@api.post("/unified_search", response_model=UnifiedSearchResult)
async def unified_search_endpoint(data: UnifiedSearchInput):
return await orchestrate_search(data.query)
@api.post("/ask_ai")
async def ask_ai_endpoint(question: str, context: str = ""):
return await answer_ai_question(question, context)
# --- PDF Export Utility ---
def generate_pdf(papers):
pdf = FPDF()
pdf.add_page()
pdf.set_font("Arial", size=12)
pdf.cell(200, 10, txt="MedGenesis AI - Search Results", ln=True, align='C')
pdf.ln(10)
for i, paper in enumerate(papers, 1):
pdf.set_font("Arial", style="B", size=12)
pdf.multi_cell(0, 10, f"{i}. {paper['title']}")
pdf.set_font("Arial", style="", size=10)
pdf.multi_cell(0, 8, f"Authors: {paper['authors']}\nLink: {paper['link']}\nSummary: {paper['summary']}\n")
pdf.ln(2)
pdf_out = pdf.output(dest='S').encode('latin-1')
return pdf_out
# --- STREAMLIT UI ---
def render_ui():
st.set_page_config(page_title="MedGenesis AI", layout="wide")
# --- SIDEBAR WORKSPACE ---
with st.sidebar:
st.header("πŸ—‚οΈ Your Workspace")
saved_queries = get_workspace()
if saved_queries:
for i, item in enumerate(saved_queries, 1):
with st.expander(f"{i}. {item['query']}"):
st.write("**AI Summary:**", item["result"]["ai_summary"])
st.write("**First Paper:**", item["result"]["papers"][0]["title"] if item["result"]["papers"] else "None")
df = pd.DataFrame(item["result"]["papers"])
st.download_button(
label="πŸ“₯ Download as CSV",
data=df.to_csv(index=False),
file_name=f"workspace_query_{i}.csv",
mime="text/csv",
)
else:
st.info("Run a search and save it here!")
# --- MAIN APP HEADER ---
col1, col2 = st.columns([0.15, 0.85])
with col1:
if LOGO_PATH.exists():
st.image(str(LOGO_PATH), width=100)
else:
st.markdown("🧬")
with col2:
st.markdown("""
## 🧬 **MedGenesis AI** – Biomedical Research Reimagined
*Unified Intelligence from PubMed, ArXiv, OpenFDA, UMLS, and GPT-4o*
""")
st.caption("Created by Oluwafemi Idiakhoa | Hugging Face Spaces")
st.markdown("---")
# Unified Semantic Search
st.subheader("πŸ” Unified Semantic Search")
query = st.text_input("Enter your biomedical research question:", placeholder="e.g. New treatments for glioblastoma using CRISPR")
results = None
if st.button("Run Search πŸš€"):
with st.spinner("Thinking... Gathering and analyzing data across 5 systems..."):
results = asyncio.run(orchestrate_search(query))
st.success("Search complete! πŸŽ‰")
if results:
tabs = st.tabs(["πŸ“ Results", "πŸ—ΊοΈ Knowledge Graph", "πŸ“Š Visualizations"])
# --- TAB 1: Results ---
with tabs[0]:
for i, paper in enumerate(results["papers"], 1):
st.markdown(f"**{i}. [{paper['title']}]({paper['link']})** \n*{paper['authors']}* ({paper['source']})")
st.markdown(f"<div style='font-size: 0.9em; color: gray'>{paper['summary']}</div>", unsafe_allow_html=True)
# Save to workspace (user-initiated, for clarity)
if st.button("Save this search to Workspace"):
save_query(query, results)
st.success("Saved to your workspace!")
# Export as CSV
if results["papers"]:
df = pd.DataFrame(results["papers"])
csv = df.to_csv(index=False)
st.download_button(
label="πŸ“₯ Download results as CSV",
data=csv,
file_name="medgenesis_results.csv",
mime="text/csv",
)
# Export as PDF
if results["papers"]:
pdf_bytes = generate_pdf(results["papers"])
st.download_button(
label="πŸ“„ Download results as PDF",
data=pdf_bytes,
file_name="medgenesis_results.pdf",
mime="application/pdf",
)
# UMLS Concepts
st.markdown("### 🧠 Biomedical Concept Enrichment (UMLS)")
for concept in results["umls"]:
if concept["cui"]:
st.markdown(f"πŸ”Ή **{concept['name']}** (CUI: `{concept['cui']}`): {concept['definition'] or 'No definition available'}")
# Drug Safety
st.markdown("### πŸ’Š Drug Safety Insights (OpenFDA)")
for drug_report in results["drug_safety"]:
if drug_report:
st.json(drug_report)
# AI Summary
st.markdown("### πŸ€– AI-Powered Summary")
st.info(results["ai_summary"])
# Suggested Reading
st.markdown("### πŸ“– Suggested Links")
for link in results["suggested_reading"]:
st.write(f"- {link}")
# --- TAB 2: Knowledge Graph ---
with tabs[1]:
st.markdown("#### Explore Connections")
kg_html_path = build_knowledge_graph(results["papers"], results["umls"], results["drug_safety"])
with open(kg_html_path, 'r', encoding='utf-8') as f:
kg_html = f.read()
components.html(kg_html, height=600)
# --- TAB 3: Visualizations ---
with tabs[2]:
pub_years = [p["published"] for p in results["papers"] if p.get("published")]
if pub_years:
fig = px.histogram(pub_years, nbins=10, title="Publication Year Distribution")
st.plotly_chart(fig)
# Placeholder for more charts
# Follow-up AI Q&A
st.markdown("---")
st.subheader("πŸ’¬ Ask AI a Follow-up Question")
follow_up = st.text_input("What do you want to ask based on the above?", placeholder="e.g. What's the most promising therapy?")
if st.button("Ask AI"):
with st.spinner("Analyzing and responding..."):
ai_answer = asyncio.run(answer_ai_question(follow_up, context=query))
st.success("AI's Response:")
st.write(ai_answer["answer"])
# Footer
st.markdown("---")
st.markdown(
"<div style='text-align: center; font-size: 0.9em;'>"
"✨ Built with ❀️ by <strong>Oluwafemi Idiakhoa</strong> β€’ Powered by FastAPI, Streamlit, Hugging Face, OpenAI, UMLS, OpenFDA, and NCBI</div>",
unsafe_allow_html=True
)
# --- MAIN ENTRY ---
if __name__ == "__main__":
import sys
if "runserver" in sys.argv:
import uvicorn
uvicorn.run(api, host="0.0.0.0", port=7860)
else:
render_ui()