Spaces:
Sleeping
Sleeping
File size: 11,587 Bytes
1e0350f 85e6b5b 1e0350f 85e6b5b 1e0350f 85e6b5b 1e0350f a1bb249 1e0350f a1bb249 85e6b5b 1e0350f 85e6b5b 1e0350f 85e6b5b 1e0350f 85e6b5b 1e0350f 85e6b5b 1e0350f 85e6b5b 1e0350f 85e6b5b 1e0350f 85e6b5b 1e0350f 85e6b5b 1e0350f 85e6b5b 1e0350f a1bb249 1e0350f 85e6b5b 1e0350f 85e6b5b 1e0350f 85e6b5b 1e0350f 85e6b5b 1e0350f 85e6b5b 1e0350f 85e6b5b 1e0350f 85e6b5b 1e0350f 85e6b5b 1e0350f 85e6b5b 1e0350f 85e6b5b a1bb249 85e6b5b 1e0350f 85e6b5b 1e0350f 85e6b5b 1e0350f 85e6b5b 1e0350f 85e6b5b a1bb249 1e0350f 85e6b5b a1bb249 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 |
# app.py
# Advanced AI R&D Assistant for Hugging Face Spaces
#
# This app leverages LangGraph, DeepSeek-R1 via text-based function calling, and Agentic RAG.
# API keys are securely loaded via environment variables.
#
# To deploy:
# 1. Add your API key to Hugging Face Space secrets with the key DEEP_SEEK_API.
# 2. Ensure your requirements.txt includes langchain-community.
# 3. Run the app with Streamlit.
import os
import re
import logging
import streamlit as st
import requests
from typing import Sequence
from typing_extensions import TypedDict, Annotated
# Updated imports for LangChain
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.vectorstores import Chroma
from langchain.schema import HumanMessage, AIMessage
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.tools.retriever import create_retriever_tool
# Imports for LangGraph remain the same
from langgraph.graph import END, StateGraph, START
from langgraph.prebuilt import ToolNode
from langgraph.graph.message import add_messages
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# --- Dummy Data Setup ---
research_texts = [
"Research Report: Results of a New AI Model Improving Image Recognition Accuracy to 98%",
"Academic Paper Summary: Why Transformers Became the Mainstream Architecture in Natural Language Processing",
"Latest Trends in Machine Learning Methods Using Quantum Computing"
]
development_texts = [
"Project A: UI Design Completed, API Integration in Progress",
"Project B: Testing New Feature X, Bug Fixes Needed",
"Product Y: In the Performance Optimization Stage Before Release"
]
# --- Preprocessing & Embeddings ---
splitter = RecursiveCharacterTextSplitter(chunk_size=100, chunk_overlap=10)
research_docs = splitter.create_documents(research_texts)
development_docs = splitter.create_documents(development_texts)
embeddings = OpenAIEmbeddings(model="text-embedding-3-large")
research_vectorstore = Chroma.from_documents(
documents=research_docs,
embedding=embeddings,
collection_name="research_collection"
)
development_vectorstore = Chroma.from_documents(
documents=development_docs,
embedding=embeddings,
collection_name="development_collection"
)
research_retriever = research_vectorstore.as_retriever()
development_retriever = development_vectorstore.as_retriever()
research_tool = create_retriever_tool(
research_retriever,
"research_db_tool",
"Search information from the research database."
)
development_tool = create_retriever_tool(
development_retriever,
"development_db_tool",
"Search information from the development database."
)
tools = [research_tool, development_tool]
# --- Agent and Workflow Functions ---
# Note: We are using only AIMessage and HumanMessage for our message types.
class AgentState(TypedDict):
messages: Annotated[Sequence[AIMessage | HumanMessage], add_messages]
def agent(state: AgentState):
logger.info("Agent invoked")
messages = state["messages"]
user_message = messages[0][1] if isinstance(messages[0], tuple) else messages[0].content
prompt = f"""Given this user question: "{user_message}"
If it's about research or academic topics, respond EXACTLY in this format:
SEARCH_RESEARCH: <search terms>
If it's about development status, respond EXACTLY in this format:
SEARCH_DEV: <search terms>
Otherwise, just answer directly.
"""
headers = {
"Accept": "application/json",
"Authorization": f"Bearer {os.environ.get('DEEP_SEEK_API')}",
"Content-Type": "application/json"
}
data = {
"model": "deepseek-chat",
"messages": [{"role": "user", "content": prompt}],
"temperature": 0.7,
"max_tokens": 1024
}
response = requests.post(
"https://api.deepseek.com/v1/chat/completions",
headers=headers,
json=data,
verify=False
)
if response.status_code == 200:
response_text = response.json()['choices'][0]['message']['content']
logger.info(f"DeepSeek response: {response_text}")
if "SEARCH_RESEARCH:" in response_text:
query = response_text.split("SEARCH_RESEARCH:")[1].strip()
results = research_retriever.invoke(query)
return {"messages": [AIMessage(content=f'Action: research_db_tool\n{{"query": "{query}"}}\n\nResults: {str(results)}')]}
elif "SEARCH_DEV:" in response_text:
query = response_text.split("SEARCH_DEV:")[1].strip()
results = development_retriever.invoke(query)
return {"messages": [AIMessage(content=f'Action: development_db_tool\n{{"query": "{query}"}}\n\nResults: {str(results)}')]}
else:
return {"messages": [AIMessage(content=response_text)]}
else:
error_msg = f"DeepSeek API call failed: {response.text}"
logger.error(error_msg)
raise Exception(error_msg)
def simple_grade_documents(state: AgentState):
last_message = state["messages"][-1]
logger.info(f"Grading message: {last_message.content}")
if "Results: [Document" in last_message.content:
return "generate"
else:
return "rewrite"
def generate(state: AgentState):
logger.info("Generating final answer")
messages = state["messages"]
question = messages[0].content if not isinstance(messages[0], tuple) else messages[0][1]
last_message = messages[-1]
docs = ""
if "Results: [" in last_message.content:
docs = last_message.content[last_message.content.find("Results: ["):]
headers = {
"Accept": "application/json",
"Authorization": f"Bearer {os.environ.get('DEEP_SEEK_API')}",
"Content-Type": "application/json"
}
prompt = f"""Based on these research documents, summarize the latest advancements in AI:
Question: {question}
Documents: {docs}
Focus on extracting and synthesizing the key findings from the research papers.
"""
data = {
"model": "deepseek-chat",
"messages": [{"role": "user", "content": prompt}],
"temperature": 0.7,
"max_tokens": 1024
}
response = requests.post(
"https://api.deepseek.com/v1/chat/completions",
headers=headers,
json=data,
verify=False
)
if response.status_code == 200:
response_text = response.json()['choices'][0]['message']['content']
return {"messages": [AIMessage(content=response_text)]}
else:
error_msg = f"DeepSeek API generate call failed: {response.text}"
logger.error(error_msg)
raise Exception(error_msg)
def rewrite(state: AgentState):
logger.info("Rewriting question")
original_question = state["messages"][0].content if state["messages"] else "N/A"
headers = {
"Accept": "application/json",
"Authorization": f"Bearer {os.environ.get('DEEP_SEEK_API')}",
"Content-Type": "application/json"
}
data = {
"model": "deepseek-chat",
"messages": [{"role": "user", "content": f"Rewrite this question to be more specific and clearer: {original_question}"}],
"temperature": 0.7,
"max_tokens": 1024
}
response = requests.post(
"https://api.deepseek.com/v1/chat/completions",
headers=headers,
json=data,
verify=False
)
if response.status_code == 200:
response_text = response.json()['choices'][0]['message']['content']
return {"messages": [AIMessage(content=response_text)]}
else:
error_msg = f"DeepSeek API rewrite call failed: {response.text}"
logger.error(error_msg)
raise Exception(error_msg)
tools_pattern = re.compile(r"Action: .*")
def custom_tools_condition(state: AgentState):
last_message = state["messages"][-1]
if tools_pattern.match(last_message.content):
return "tools"
return END
# Build the workflow with LangGraph's StateGraph
workflow = StateGraph(AgentState)
workflow.add_node("agent", agent)
retrieve_node = ToolNode(tools)
workflow.add_node("retrieve", retrieve_node)
workflow.add_node("rewrite", rewrite)
workflow.add_node("generate", generate)
workflow.add_edge(START, "agent")
workflow.add_conditional_edges("agent", custom_tools_condition, {"tools": "retrieve", END: END})
workflow.add_conditional_edges("retrieve", simple_grade_documents)
workflow.add_edge("generate", END)
workflow.add_edge("rewrite", "agent")
app_workflow = workflow.compile()
def process_question(user_question, app, config):
events = []
for event in app.stream({"messages": [("user", user_question)]}, config):
events.append(event)
return events
# --- Streamlit UI ---
def main():
st.set_page_config(page_title="Advanced AI R&D Assistant", layout="wide", initial_sidebar_state="expanded")
st.markdown(
"""
<style>
.stApp { background-color: #f8f9fa; }
.stButton > button { width: 100%; margin-top: 20px; }
.data-box { padding: 20px; border-radius: 10px; margin: 10px 0; }
.research-box { background-color: #e3f2fd; border-left: 5px solid #1976d2; }
.dev-box { background-color: #e8f5e9; border-left: 5px solid #43a047; }
</style>
""", unsafe_allow_html=True
)
# Sidebar: Display available data
with st.sidebar:
st.header("π Available Data")
st.subheader("Research Database")
for text in research_texts:
st.markdown(f'<div class="data-box research-box">{text}</div>', unsafe_allow_html=True)
st.subheader("Development Database")
for text in development_texts:
st.markdown(f'<div class="data-box dev-box">{text}</div>', unsafe_allow_html=True)
st.title("π€ Advanced AI R&D Assistant")
st.markdown("---")
query = st.text_area("Enter your question:", height=100, placeholder="e.g., What is the latest advancement in AI research?")
col1, col2 = st.columns([1, 2])
with col1:
if st.button("π Get Answer", use_container_width=True):
if query:
with st.spinner('Processing your question...'):
events = process_question(query, app_workflow, {"configurable": {"thread_id": "1"}})
for event in events:
if 'agent' in event:
with st.expander("π Processing Step", expanded=True):
content = event['agent']['messages'][0].content
if "Results:" in content:
st.markdown("### π Retrieved Documents:")
docs = content[content.find("Results:"):]
st.info(docs)
elif 'generate' in event:
st.markdown("### β¨ Final Answer:")
st.success(event['generate']['messages'][0].content)
else:
st.warning("β οΈ Please enter a question first!")
with col2:
st.markdown(
"""
### π― How to Use
1. Type your question in the text box.
2. Click "Get Answer" to process.
3. View retrieved documents and the final answer.
### π‘ Example Questions
- What are the latest advancements in AI research?
- What is the status of Project A?
- What are the current trends in machine learning?
"""
)
if __name__ == "__main__":
main()
|