File size: 19,146 Bytes
c08faed b5fce9d 486ca98 5bd4d74 486ca98 c08faed 51fb89c b5fce9d 486ca98 51fb89c 486ca98 b5fce9d 486ca98 b5fce9d 486ca98 b5fce9d 486ca98 c08faed 486ca98 5bd4d74 486ca98 f7b84f1 486ca98 1956035 486ca98 5bd4d74 486ca98 f72077b 486ca98 b5fce9d 486ca98 b5fce9d 486ca98 1956035 486ca98 1956035 486ca98 1956035 486ca98 272b87c 486ca98 b5fce9d 486ca98 b5fce9d 486ca98 1956035 486ca98 f72077b 486ca98 f72077b 486ca98 b5fce9d 486ca98 f7b84f1 486ca98 f7b84f1 c08faed 486ca98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 |
import gradio as gr
import pandas as pd
import numpy as np
import plotly.express as px
import io
import json
import warnings
import google.generativeai as genai
import os
from typing import List, Dict, Any, Tuple, Optional
# --- Configuration & Constants ---
warnings.filterwarnings('ignore')
CSS = """
/* --- Phoenix UI Professional Dark CSS --- */
body { --body-background-fill: #111827; }
.stat-card { border-radius: 12px !important; padding: 20px !important; background: #1f2937 !important; border: 1px solid #374151 !important; text-align: center; transition: all 0.3s ease; }
.stat-card:hover { transform: translateY(-5px); box-shadow: 0 10px 15px -3px rgba(0,0,0,0.1), 0 4px 6px -2px rgba(0,0,0,0.05); }
.stat-card-title { font-size: 16px; font-weight: 500; color: #9ca3af !important; margin-bottom: 8px; }
.stat-card-value { font-size: 32px; font-weight: 700; color: #f9fafb !important; }
.sidebar { background-color: #111827 !important; padding: 15px; border-right: 1px solid #374151 !important; min-height: 100vh; }
.sidebar .gr-button { width: 100%; text-align: left !important; background: none !important; border: none !important; box-shadow: none !important; color: #d1d5db !important; font-size: 16px !important; padding: 12px 10px !important; margin-bottom: 8px !important; border-radius: 8px !important; transition: background-color 0.2s ease; }
.sidebar .gr-button:hover { background-color: #374151 !important; }
.sidebar .gr-button.selected { background-color: #4f46e5 !important; font-weight: 600 !important; color: white !important; }
.explanation-block { background-color: #1e3a8a !important; border-left: 4px solid #3b82f6 !important; padding: 12px; color: #e5e7eb !important; border-radius: 4px; }
"""
class DataExplorerApp:
"""A professional-grade, AI-powered data exploration application."""
def __init__(self):
"""Initializes the application state and builds the UI."""
self.state: Dict[str, Any] = {}
self.demo = self._create_layout()
self._register_event_handlers()
def _create_layout(self) -> gr.Blocks:
"""Defines all UI components and arranges them in the layout."""
with gr.Blocks(theme=gr.themes.Glass(primary_hue="indigo", secondary_hue="blue"), css=CSS, title="Professional AI Data Explorer") as demo:
# --- State Management ---
self.state_var = gr.State({})
# --- Component Definition ---
# Sidebar
self.cockpit_btn = gr.Button("π Data Cockpit", elem_classes="selected", elem_id="cockpit")
self.deep_dive_btn = gr.Button("π Deep Dive Builder", elem_id="deep_dive")
self.copilot_btn = gr.Button("π€ Chief Data Scientist", elem_id="co-pilot")
self.file_input = gr.File(label="π Upload CSV File", file_types=[".csv"])
self.status_output = gr.Markdown("Status: Awaiting data...")
self.api_key_input = gr.Textbox(label="π Gemini API Key", type="password", placeholder="Enter key to enable AI...")
self.suggestion_btn = gr.Button("Get Smart Suggestions", variant="secondary", interactive=False)
# Cockpit
self.rows_stat = gr.Textbox("0", interactive=False, elem_classes="stat-card-value")
self.cols_stat = gr.Textbox("0", interactive=False, elem_classes="stat-card-value")
self.quality_stat = gr.Textbox("0%", interactive=False, elem_classes="stat-card-value")
self.time_cols_stat = gr.Textbox("0", interactive=False, elem_classes="stat-card-value")
self.suggestion_buttons = [gr.Button(visible=False) for _ in range(5)]
# Deep Dive
self.plot_type_dd = gr.Dropdown(['histogram', 'bar', 'scatter', 'box'], label="Plot Type", value='histogram')
self.x_col_dd = gr.Dropdown([], label="X-Axis / Column", interactive=False)
self.y_col_dd = gr.Dropdown([], label="Y-Axis (for Scatter/Box)", visible=False, interactive=False)
self.add_plot_btn = gr.Button("Add to Dashboard", variant="primary", interactive=False)
self.clear_plots_btn = gr.Button("Clear Dashboard")
self.dashboard_gallery = gr.Gallery(label="π Your Custom Dashboard", height="auto", columns=2, preview=True)
# Co-pilot
self.chatbot = gr.Chatbot(height=500, label="Conversation", show_copy_button=True)
self.copilot_explanation = gr.Markdown(visible=False, elem_classes="explanation-block")
self.copilot_code = gr.Code(language="python", visible=False, label="Executed Code")
self.copilot_plot = gr.Plot(visible=False, label="Generated Visualization")
self.copilot_table = gr.Dataframe(visible=False, label="Generated Table", wrap=True)
self.chat_input = gr.Textbox(label="Your Question", placeholder="e.g., 'What is the relationship between age and salary?'", scale=4)
self.chat_submit_btn = gr.Button("Ask AI", variant="primary")
# --- Layout Arrangement ---
with gr.Row():
with gr.Column(scale=1, elem_classes="sidebar"):
gr.Markdown("## π AI Explorer Pro")
self.cockpit_btn; self.deep_dive_btn; self.copilot_btn; gr.Markdown("---")
self.file_input; self.status_output; gr.Markdown("---"); self.api_key_input; self.suggestion_btn
with gr.Column(scale=4):
self.welcome_page = gr.Column(visible=True)
with self.welcome_page:
gr.Markdown("# Welcome to the AI Data Explorer Pro\n> Please **upload a CSV file** and **enter your Gemini API key** to begin your analysis.")
self.cockpit_page = gr.Column(visible=False)
with self.cockpit_page:
gr.Markdown("## π Data Cockpit: At-a-Glance Overview")
with gr.Row():
with gr.Column(elem_classes="stat-card"): gr.Markdown("<div class='stat-card-title'>Rows</div>"); self.rows_stat
with gr.Column(elem_classes="stat-card"): gr.Markdown("<div class='stat-card-title'>Columns</div>"); self.cols_stat
with gr.Column(elem_classes="stat-card"): gr.Markdown("<div class='stat-card-title'>Data Quality</div>"); self.quality_stat
with gr.Column(elem_classes="stat-card"): gr.Markdown("<div class='stat-card-title'>Date/Time Cols</div>"); self.time_cols_stat
with gr.Accordion(label="β¨ AI Smart Suggestions", open=True): [btn for btn in self.suggestion_buttons]
self.deep_dive_page = gr.Column(visible=False)
with self.deep_dive_page:
gr.Markdown("## π Deep Dive: Manual Dashboard Builder"); gr.Markdown("Construct your own visualizations to investigate specific relationships.")
with gr.Row(): self.plot_type_dd; self.x_col_dd; self.y_col_dd
with gr.Row(): self.add_plot_btn; self.clear_plots_btn
self.dashboard_gallery
self.copilot_page = gr.Column(visible=False)
with self.copilot_page:
gr.Markdown("## π€ Chief Data Scientist: Your AI Partner"); self.chatbot
with gr.Accordion("AI's Detailed Response", open=True): self.copilot_explanation; self.copilot_code; self.copilot_plot; self.copilot_table
with gr.Row(): self.chat_input; self.chat_submit_btn
return demo
def _register_event_handlers(self):
"""Connects UI components to their backend logic functions."""
# Navigation
nav_buttons = [self.cockpit_btn, self.deep_dive_btn, self.copilot_btn]
pages = [self.cockpit_page, self.deep_dive_page, self.copilot_page]
for i, btn in enumerate(nav_buttons):
btn.click(
lambda id=btn.elem_id: self._switch_page(id), outputs=pages
).then(
lambda i=i: [gr.update(elem_classes="selected" if j==i else "") for j in range(len(nav_buttons))], outputs=nav_buttons
)
# File Upload
self.file_input.upload(self.load_and_process_file, inputs=[self.file_input], outputs=[
self.state_var, self.status_output, self.welcome_page, self.cockpit_page,
self.rows_stat, self.cols_stat, self.quality_stat, self.time_cols_stat,
self.x_col_dd, self.y_col_dd, self.add_plot_btn
]).then(lambda: self._switch_page("cockpit"), outputs=pages) \
.then(lambda: [gr.update(elem_classes="selected"), gr.update(elem_classes=""), gr.update(elem_classes="")], outputs=nav_buttons)
# API Key Input
self.api_key_input.change(lambda x: gr.update(interactive=bool(x)), inputs=[self.api_key_input], outputs=[self.suggestion_btn])
# Deep Dive Page Logic
self.plot_type_dd.change(self._update_plot_controls, inputs=[self.plot_type_dd], outputs=[self.y_col_dd])
self.add_plot_btn.click(self.add_plot_to_dashboard, inputs=[self.state_var, self.x_col_dd, self.y_col_dd, self.plot_type_dd], outputs=[self.state_var, self.dashboard_gallery])
self.clear_plots_btn.click(self.clear_dashboard, inputs=[self.state_var], outputs=[self.state_var, self.dashboard_gallery])
# Co-pilot & Suggestions
self.suggestion_btn.click(self.get_ai_suggestions, inputs=[self.state_var, self.api_key_input], outputs=self.suggestion_buttons)
for btn in self.suggestion_buttons:
btn.click(self.handle_suggestion_click, inputs=[btn], outputs=[self.cockpit_page, self.deep_dive_page, self.copilot_page, self.chat_input]) \
.then(lambda: self._switch_page("co-pilot"), outputs=pages) \
.then(lambda: (gr.update(elem_classes=""), gr.update(elem_classes=""), gr.update(elem_classes="selected")), outputs=nav_buttons)
self.chat_submit_btn.click(self.respond_to_chat, [self.state_var, self.api_key_input, self.chat_input, self.chatbot], [self.chatbot, self.copilot_explanation, self.copilot_code, self.copilot_plot, self.copilot_table]).then(lambda: "", outputs=[self.chat_input])
self.chat_input.submit(self.respond_to_chat, [self.state_var, self.api_key_input, self.chat_input, self.chatbot], [self.chatbot, self.copilot_explanation, self.copilot_code, self.copilot_plot, self.copilot_table]).then(lambda: "", outputs=[self.chat_input])
def launch(self):
"""Launches the Gradio application."""
self.demo.launch(debug=True)
# --- Backend Logic Methods ---
def _switch_page(self, page_id: str) -> Tuple[gr.update, ...]:
return gr.update(visible=page_id=="cockpit"), gr.update(visible=page_id=="deep_dive"), gr.update(visible=page_id=="co-pilot")
def _update_plot_controls(self, plot_type: str) -> gr.update:
is_bivariate = plot_type in ['scatter', 'box']
return gr.update(visible=is_bivariate)
def load_and_process_file(self, file_obj: Any) -> Tuple[Any, ...]:
try:
df = pd.read_csv(file_obj.name, low_memory=False)
for col in df.select_dtypes(include=['object']).columns:
try: df[col] = pd.to_datetime(df[col], errors='raise')
except (ValueError, TypeError): continue
metadata = self._extract_dataset_metadata(df)
state = {'df': df, 'metadata': metadata, 'dashboard_plots': []}
status_msg = f"β
**{os.path.basename(file_obj.name)}** loaded."
rows, cols, quality = metadata['shape'][0], metadata['shape'][1], metadata['data_quality']
return (state, status_msg, gr.update(visible=False), gr.update(visible=True),
f"{rows:,}", f"{cols}", f"{quality}%", f"{len(metadata['datetime_cols'])}",
gr.update(choices=metadata['columns'], interactive=True), gr.update(choices=metadata['columns'], interactive=True), gr.update(interactive=True))
except Exception as e:
gr.Error(f"File Load Error: {e}")
return {}, f"β Error: {e}", gr.update(visible=True), gr.update(visible=False), "0", "0", "0%", "0", gr.update(choices=[], interactive=False), gr.update(choices=[], interactive=False), gr.update(interactive=False)
def _extract_dataset_metadata(self, df: pd.DataFrame) -> Dict[str, Any]:
rows, cols = df.shape
quality = round((df.notna().sum().sum() / (rows * cols)) * 100, 1) if rows * cols > 0 else 0
return {'shape': (rows, cols), 'columns': df.columns.tolist(),
'numeric_cols': df.select_dtypes(include=np.number).columns.tolist(),
'categorical_cols': df.select_dtypes(include=['object', 'category']).columns.tolist(),
'datetime_cols': df.select_dtypes(include=['datetime64', 'datetime64[ns]']).columns.tolist(),
'dtypes_head': df.head().to_string()}
def add_plot_to_dashboard(self, state: Dict, x_col: str, y_col: str, plot_type: str) -> Tuple[Dict, List]:
if not x_col:
gr.Warning("Please select at least an X-axis column.")
return state, state.get('dashboard_plots', [])
df = state['df']
title = f"{plot_type.capitalize()}: {y_col} by {x_col}" if y_col else f"Distribution of {x_col}"
try:
if plot_type == 'histogram': fig = px.histogram(df, x=x_col, title=title)
elif plot_type == 'box': fig = px.box(df, x=x_col, y=y_col, title=title)
elif plot_type == 'scatter': fig = px.scatter(df, x=x_col, y=y_col, title=title, trendline="ols", trendline_color_override="red")
elif plot_type == 'bar':
counts = df[x_col].value_counts().nlargest(20)
fig = px.bar(counts, x=counts.index, y=counts.values, title=f"Top 20 Categories for {x_col}", labels={'index': x_col, 'y': 'Count'})
if fig:
fig.update_layout(template="plotly_dark")
state['dashboard_plots'].append(fig)
gr.Info(f"Added '{title}' to the dashboard.")
return state, state['dashboard_plots']
except Exception as e:
gr.Error(f"Plotting Error: {e}"); return state, state.get('dashboard_plots', [])
def clear_dashboard(self, state: Dict) -> Tuple[Dict, List]:
state['dashboard_plots'] = []
gr.Info("Dashboard cleared.")
return state, []
def get_ai_suggestions(self, state: Dict, api_key: str) -> List[gr.update]:
if not api_key: gr.Warning("API Key is required for suggestions."); return [gr.update(visible=False)]*5
if not state: gr.Warning("Please load data first."); return [gr.update(visible=False)]*5
metadata = state['metadata']
prompt = f"""Based on this metadata (columns: {metadata['columns']}), generate 4 impactful analytical questions. Return ONLY a JSON list of strings."""
try:
genai.configure(api_key=api_key)
suggestions = json.loads(genai.GenerativeModel('gemini-1.5-flash').generate_content(prompt).text)
return [gr.Button(s, visible=True) for s in suggestions] + [gr.Button(visible=False)] * (5 - len(suggestions))
except Exception as e: gr.Error(f"AI Suggestion Error: {e}"); return [gr.update(visible=False)]*5
def handle_suggestion_click(self, question: str) -> Tuple[gr.update, ...]:
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=True), question
def respond_to_chat(self, state: Dict, api_key: str, user_message: str, history: List) -> Tuple[List, ...]:
if not api_key or not state:
msg = "I need a Gemini API key and a dataset to work."
history.append((user_message, msg)); return history, *[gr.update(visible=False)]*4
history.append((user_message, "Thinking... π€")); yield history, *[gr.update(visible=False)]*4
metadata = state['metadata']
prompt = f"""You are 'Chief Data Scientist', an expert AI analyst. Your goal is to answer a user's question about a pandas DataFrame (`df`) by writing and executing Python code.
**Instructions:**
1. **Analyze the Request:** Understand the user's intent, even if it's vague.
2. **Choose the Best Method:** Decide if the answer is a table (e.g., `df.describe()`), a single value, or a visualization. If a plot is needed, choose the BEST plot type (e.g., 'histogram' for distribution, 'scatter' for two numerics, 'bar' for categorical counts).
3. **Formulate a Plan:** Briefly explain your plan of attack.
4. **Write Code:** Generate the Python code. Use pandas (`pd`), numpy (`np`), and plotly express (`px`).
- For plots, assign to `fig` and add `template='plotly_dark'`.
- For tables, assign the final DataFrame to `result_df`.
5. **Provide Insights:** After the result, give a one or two-sentence INSIGHT. What does the result mean? What is the business implication?
6. **Respond ONLY with a single JSON object with keys: "plan", "code", "insight".**
**DataFrame Metadata:** {metadata['dtypes_head']}
**User Question:** "{user_message}"
"""
try:
genai.configure(api_key=api_key)
response_json = json.loads(genai.GenerativeModel('gemini-1.5-flash').generate_content(prompt).text.strip().replace("```json", "").replace("```", ""))
plan, code_to_run, insight = response_json.get("plan"), response_json.get("code"), response_json.get("insight")
stdout, fig_result, df_result, error = self._safe_exec(code_to_run, {'df': state['df'], 'px': px, 'pd': pd, 'np': np})
history[-1] = (user_message, f"**Plan:** {plan}")
explanation = f"**Insight:** {insight}"
if stdout: explanation += f"\n\n**Console Output:**\n```\n{stdout}\n```"
if error: gr.Error(f"AI Code Execution Failed: {error}")
yield (history, gr.update(visible=bool(explanation)), gr.update(visible=bool(code_to_run), value=code_to_run),
gr.update(visible=bool(fig_result), value=fig_result), gr.update(visible=bool(df_result is not None), value=df_result))
except Exception as e:
history[-1] = (user_message, f"I'm sorry, I encountered an error. Please try rephrasing your question. (Error: {e})")
yield history, *[gr.update(visible=False)]*4
def _safe_exec(self, code_string: str, local_vars: Dict) -> Tuple[Any, ...]:
output_buffer = io.StringIO()
try:
with redirect_stdout(output_buffer): exec(code_string, globals(), local_vars)
return output_buffer.getvalue(), local_vars.get('fig'), local_vars.get('result_df'), None
except Exception as e: return None, None, None, f"Execution Error: {str(e)}"
if __name__ == "__main__":
app = DataExplorerApp()
app.launch() |