PhoenixUI / app.py
mgbam's picture
Create app.py
c08faed verified
raw
history blame
21.1 kB
import gradio as gr
import pandas as pd
import numpy as np
import plotly.express as px
import plotly.graph_objects as go
from plotly.subplots import make_subplots
import io
from scipy import stats
import warnings
import google.generativeai as genai
import os
from dotenv import load_dotenv
import logging
import json
from contextlib import redirect_stdout
# --- Configuration ---
warnings.filterwarnings('ignore')
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
# --- Helper Functions ---
def safe_exec(code_string: str, local_vars: dict) -> tuple:
"""Safely execute a string of Python code and capture its output."""
output_buffer = io.StringIO()
try:
with redirect_stdout(output_buffer):
exec(code_string, globals(), local_vars)
stdout_output = output_buffer.getvalue()
fig = local_vars.get('fig', None)
return stdout_output, fig, None
except Exception as e:
error_message = f"Execution Error: {str(e)}"
logging.error(f"Error executing AI-generated code: {error_message}")
return None, None, error_message
# --- Core Data Processing ---
def load_and_process_file(file_obj, state_dict):
"""Loads a CSV file and performs initial processing, updating the global state."""
if file_obj is None:
return None, "Please upload a file.", gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
try:
df = pd.read_csv(file_obj.name)
# Attempt to convert object columns to datetime
for col in df.select_dtypes(include=['object']).columns:
try:
df[col] = pd.to_datetime(df[col], errors='raise')
logging.info(f"Successfully converted column '{col}' to datetime.")
except (ValueError, TypeError):
continue
metadata = extract_dataset_metadata(df)
state_dict = {
'df': df,
'metadata': metadata,
'filename': os.path.basename(file_obj.name)
}
# Update UI elements dynamically
update_args = {
'choices': metadata['columns'],
'value': None,
'interactive': True
}
# Check for time series tab visibility
time_series_visible = len(metadata['datetime_cols']) > 0
return (
state_dict,
f"βœ… Loaded `{state_dict['filename']}` ({metadata['shape'][0]} rows, {metadata['shape'][1]} cols)",
gr.update(**update_args), gr.update(**update_args), gr.update(**update_args),
gr.update(choices=metadata['numeric_cols'], value=None, interactive=True),
gr.update(choices=metadata['datetime_cols'], value=None, interactive=True),
gr.update(visible=time_series_visible), # Show/hide Time Series tab
gr.update(visible=True) # Show Chatbot tab
)
except Exception as e:
logging.error(f"Error loading file: {e}")
return state_dict, f"❌ Error: {e}", gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update(visible=False), gr.update(visible=False)
def extract_dataset_metadata(df: pd.DataFrame) -> dict:
"""Extracts comprehensive metadata from a DataFrame."""
rows, cols = df.shape
columns = df.columns.tolist()
numeric_cols = df.select_dtypes(include=np.number).columns.tolist()
categorical_cols = df.select_dtypes(include=['object', 'category']).columns.tolist()
datetime_cols = df.select_dtypes(include=['datetime64', 'datetime64[ns]']).columns.tolist()
missing_data = df.isnull().sum()
data_quality = round((df.notna().sum().sum() / (rows * cols)) * 100, 1) if rows * cols > 0 else 0
return {
'shape': (rows, cols),
'columns': columns,
'numeric_cols': numeric_cols,
'categorical_cols': categorical_cols,
'datetime_cols': datetime_cols,
'dtypes': df.dtypes.to_string(),
'missing_data': missing_data.to_dict(),
'data_quality': data_quality,
'head': df.head().to_string()
}
# --- Tab 1: AI Overview ---
def analyze_dataset_overview(state_dict, api_key: str):
"""Generates an AI-powered narrative overview of the dataset."""
if not state_dict:
return "❌ Please upload a dataset first.", "", 0
if not api_key:
return "❌ Please enter your Gemini API key.", "", 0
metadata = state_dict['metadata']
# Create prompt for Gemini
prompt = f"""
You are an expert data analyst and storyteller. Your task is to provide a high-level, engaging overview of a dataset based on its metadata.
**Dataset Metadata:**
- **Shape:** {metadata['shape'][0]} rows, {metadata['shape'][1]} columns
- **Column Names:** {', '.join(metadata['columns'])}
- **Numeric Columns:** {', '.join(metadata['numeric_cols'])}
- **Categorical Columns:** {', '.join(metadata['categorical_cols'])}
- **Datetime Columns:** {', '.join(metadata['datetime_cols'])}
- **Data Quality (Non-missing values):** {metadata['data_quality']}%
- **First 5 rows:**
{metadata['head']}
**Your Task:**
Based on the metadata, generate a report in Markdown format. Use emojis to make it visually appealing. The report should have the following sections:
# πŸš€ AI-Powered Dataset Overview
## πŸ€” What is this dataset likely about?
(Predict the domain and purpose of the dataset, e.g., "This appears to be customer transaction data for an e-commerce platform.")
## πŸ’‘ Potential Key Questions to Explore
- (Suggest 3-4 interesting business or research questions the data could answer.)
- (Example: "Which products are most frequently purchased together?")
## πŸ“Š Potential Analyses & Visualizations
- (List 3-4 types of analyses that would be valuable.)
- (Example: "Time series analysis of sales to identify seasonality.")
## ⚠️ Data Quality & Potential Issues
- (Briefly comment on the data quality score and mention if the presence of datetime columns is a good sign for certain analyses.)
"""
try:
genai.configure(api_key=api_key)
model = genai.GenerativeModel('gemini-1.5-flash')
response = model.generate_content(prompt)
story = response.text
except Exception as e:
story = f"## ⚠️ AI Generation Failed\n**Error:** {str(e)}\n\nPlease check your API key and network connection. A fallback analysis is provided below.\n\n" \
f"### Fallback Analysis\nThis dataset contains **{metadata['shape'][0]}** records and **{metadata['shape'][1]}** features. " \
f"It includes **{len(metadata['numeric_cols'])}** numeric, **{len(metadata['categorical_cols'])}** categorical, " \
f"and **{len(metadata['datetime_cols'])}** time-based columns. The overall data quality is **{metadata['data_quality']}%**, " \
f"which is a good starting point for analysis."
# Basic Info Summary
basic_info = f"""
πŸ“‹ **File:** `{state_dict.get('filename', 'N/A')}`
πŸ“Š **Size:** {metadata['shape'][0]:,} rows Γ— {metadata['shape'][1]} columns
πŸ”’ **Features:**
β€’ **Numeric:** {len(metadata['numeric_cols'])}
β€’ **Categorical:** {len(metadata['categorical_cols'])}
β€’ **DateTime:** {len(metadata['datetime_cols'])}
🎯 **Data Quality:** {metadata['data_quality']}%
"""
return story, basic_info, metadata['data_quality']
# --- Tab 2: Univariate Analysis ---
def generate_univariate_plot(column_name, state_dict):
"""Generates plots for a single selected variable."""
if not column_name or not state_dict:
return None, "Select a column to analyze."
df = state_dict['df']
metadata = state_dict['metadata']
fig = None
summary = ""
if column_name in metadata['numeric_cols']:
fig = make_subplots(rows=1, cols=2, subplot_titles=("Histogram", "Box Plot"))
fig.add_trace(go.Histogram(x=df[column_name], name="Histogram"), row=1, col=1)
fig.add_trace(go.Box(y=df[column_name], name="Box Plot"), row=1, col=2)
fig.update_layout(title_text=f"Distribution of '{column_name}'", showlegend=False)
summary = df[column_name].describe().to_frame().to_markdown()
elif column_name in metadata['categorical_cols']:
top_n = 20
counts = df[column_name].value_counts()
title = f"Top {min(top_n, len(counts))} Categories for '{column_name}'"
fig = px.bar(counts.nlargest(top_n), title=title, labels={'index': column_name, 'value': 'Count'})
fig.update_layout(showlegend=False)
summary = counts.to_frame().to_markdown()
elif column_name in metadata['datetime_cols']:
counts = df[column_name].dt.to_period("M").value_counts().sort_index()
fig = px.line(x=counts.index.to_timestamp(), y=counts.values, title=f"Records over Time for '{column_name}'")
fig.update_layout(xaxis_title="Time", yaxis_title="Record Count")
summary = df[column_name].describe(datetime_is_numeric=True).to_frame().to_markdown()
return fig, summary
# --- Tab 3: Bivariate Analysis ---
def generate_bivariate_plot(x_col, y_col, state_dict):
"""Generates plots to explore the relationship between two variables."""
if not x_col or not y_col or not state_dict:
return None, "Select two columns to analyze."
if x_col == y_col:
return None, "Please select two different columns."
df = state_dict['df']
metadata = state_dict['metadata']
x_type = 'numeric' if x_col in metadata['numeric_cols'] else 'categorical'
y_type = 'numeric' if y_col in metadata['numeric_cols'] else 'categorical'
fig = None
title = f"{x_col} vs. {y_col}"
if x_type == 'numeric' and y_type == 'numeric':
fig = px.scatter(df, x=x_col, y=y_col, title=f"Scatter Plot: {title}", trendline="ols", trendline_color_override="red")
summary = df[[x_col, y_col]].corr().to_markdown()
elif x_type == 'numeric' and y_type == 'categorical':
fig = px.box(df, x=x_col, y=y_col, title=f"Box Plot: {title}")
summary = df.groupby(y_col)[x_col].describe().to_markdown()
elif x_type == 'categorical' and y_type == 'numeric':
fig = px.box(df, x=y_col, y=x_col, title=f"Box Plot: {title}")
summary = df.groupby(x_col)[y_col].describe().to_markdown()
else: # Both categorical
crosstab = pd.crosstab(df[x_col], df[y_col])
fig = px.imshow(crosstab, title=f"Heatmap of Counts: {title}", text_auto=True)
summary = crosstab.to_markdown()
return fig, f"### Analysis Summary\n{summary}"
# --- Tab 4: Time Series Analysis ---
def generate_time_series_plot(time_col, value_col, resample_freq, state_dict):
"""Generates a time series plot with resampling."""
if not time_col or not value_col or not state_dict:
return None, "Select Time and Value columns."
df = state_dict['df'].copy()
try:
df[time_col] = pd.to_datetime(df[time_col])
df_resampled = df.set_index(time_col)[value_col].resample(resample_freq).mean().reset_index()
fig = px.line(df_resampled, x=time_col, y=value_col,
title=f"Time Series of {value_col} (Resampled to '{resample_freq}')")
fig.update_layout(xaxis_title="Date", yaxis_title=f"Mean of {value_col}")
return fig, f"Showing mean of '{value_col}' aggregated by '{resample_freq}'."
except Exception as e:
return None, f"Error: {e}"
# --- Tab 5: AI Analyst Chat ---
def respond_to_chat(user_message, history, state_dict, api_key):
"""Handles the chat interaction with the AI Analyst."""
if not api_key:
history.append((user_message, "I can't answer without a Gemini API key. Please enter it in the 'AI Overview' tab."))
return history, None, ""
if not state_dict:
history.append((user_message, "Please upload a dataset before asking questions."))
return history, None, ""
history.append((user_message, None))
df_metadata = state_dict['metadata']
# Construct a robust prompt for the AI
prompt = f"""
You are an AI Data Analyst assistant. Your name is 'Gemini Analyst'.
You are given a pandas DataFrame named `df`.
Your goal is to answer the user's question about this DataFrame by writing and executing Python code.
**Instructions:**
1. Analyze the user's question.
2. Write Python code to answer it.
3. You can use pandas, numpy, and plotly.express.
4. If you create a plot, you **MUST** assign it to a variable named `fig`. The plot will be displayed to the user.
5. If you are just calculating something or printing text, the `print()` output will be shown.
6. **DO NOT** write any code that modifies the DataFrame (e.g., `df.dropna(inplace=True)`). Use `df.copy()` if you need to modify data.
7. Respond **ONLY** with a JSON object containing two keys: "thought" and "code".
- "thought": A short, one-sentence explanation of your plan.
- "code": A string containing the Python code to execute.
**DataFrame Metadata:**
- **Filename:** {state_dict['filename']}
- **Shape:** {df_metadata['shape'][0]} rows, {df_metadata['shape'][1]} columns
- **Columns and Data Types:**
{df_metadata['dtypes']}
---
**User Question:** "{user_message}"
---
**Your JSON Response:**
"""
try:
genai.configure(api_key=api_key)
model = genai.GenerativeModel('gemini-1.5-flash')
response = model.generate_content(prompt)
# Clean and parse the JSON response
response_text = response.text.strip().replace("```json", "").replace("```", "")
response_json = json.loads(response_text)
thought = response_json.get("thought", "Thinking...")
code_to_run = response_json.get("code", "")
bot_message = f"🧠 **Thought:** {thought}\n\n"
# Execute the code
local_vars = {'df': state_dict['df'], 'px': px, 'pd': pd, 'np': np}
stdout, fig_result, error = safe_exec(code_to_run, local_vars)
if error:
bot_message += f"πŸ’₯ **Error:**\n```\n{error}\n```"
history[-1] = (user_message, bot_message)
return history, None, ""
if stdout:
bot_message += f"πŸ“‹ **Output:**\n```\n{stdout}\n```"
if not fig_result and not stdout:
bot_message += "βœ… Code executed successfully, but it produced no visible output."
history[-1] = (user_message, bot_message)
return history, fig_result, ""
except Exception as e:
error_msg = f"An unexpected error occurred: {e}. The AI might have returned an invalid response. Please try rephrasing your question."
logging.error(f"Chatbot error: {error_msg}")
history[-1] = (user_message, error_msg)
return history, None, ""
# --- Gradio Interface ---
def create_gradio_interface():
"""Builds and returns the full Gradio application interface."""
with gr.Blocks(title="πŸš€ AI Data Explorer", theme=gr.themes.Soft()) as demo:
# Global state to hold data
global_state = gr.State({})
# Header
gr.Markdown("# πŸš€ AI Data Explorer: Your Advanced Analytic Tool")
gr.Markdown("Upload a CSV, then explore your data with interactive tabs and a powerful AI Analyst.")
# --- Top Row: File Upload and API Key ---
with gr.Row():
with gr.Column(scale=2):
file_input = gr.File(label="πŸ“ Upload CSV File", file_types=[".csv"])
status_output = gr.Markdown("Status: Waiting for file...")
with gr.Column(scale=1):
api_key_input = gr.Textbox(
label="πŸ”‘ Gemini API Key",
placeholder="Enter your key here...",
type="password",
info="Get your free key from Google AI Studio"
)
# --- Main Tabs ---
with gr.Tabs() as tabs:
# Tab 1: AI Overview
with gr.Tab("πŸ€– AI Overview", id=0):
overview_btn = gr.Button("🧠 Generate AI Overview", variant="primary")
with gr.Row():
story_output = gr.Markdown(label="πŸ“– AI-Generated Story")
with gr.Column():
basic_info_output = gr.Markdown(label="πŸ“‹ Basic Information")
quality_score = gr.Number(label="🎯 Data Quality Score (%)", interactive=False)
# Tab 2: Univariate Analysis
with gr.Tab("πŸ“Š Univariate Analysis", id=1):
uni_col_select = gr.Dropdown(label="Select a Column to Analyze", interactive=False)
with gr.Row():
uni_plot_output = gr.Plot(label="Distribution Plot")
uni_summary_output = gr.Markdown(label="Summary Statistics")
# Tab 3: Bivariate Analysis
with gr.Tab("πŸ“ˆ Bivariate Analysis", id=2):
with gr.Row():
bi_x_select = gr.Dropdown(label="Select X-Axis Column", interactive=False)
bi_y_select = gr.Dropdown(label="Select Y-Axis Column", interactive=False)
bi_btn = gr.Button("🎨 Generate Bivariate Plot", variant="secondary")
with gr.Row():
bi_plot_output = gr.Plot(label="Relationship Plot")
bi_summary_output = gr.Markdown(label="Analysis Summary")
# Tab 4: Time Series (conditionally visible)
with gr.Tab("⏳ Time Series Analysis", id=3, visible=False) as ts_tab:
with gr.Row():
ts_time_col = gr.Dropdown(label="Select Time Column", interactive=False)
ts_value_col = gr.Dropdown(label="Select Value Column", interactive=False)
ts_resample = gr.Radio(['D', 'W', 'M', 'Q', 'Y'], label="Resample Frequency", value='M')
ts_btn = gr.Button("πŸ“ˆ Plot Time Series", variant="secondary")
ts_plot_output = gr.Plot(label="Time Series Plot")
ts_status_output = gr.Markdown()
# Tab 5: AI Analyst Chat (conditionally visible)
with gr.Tab("πŸ’¬ AI Analyst Chat", id=4, visible=False) as chat_tab:
chatbot = gr.Chatbot(label="Chat with Gemini Analyst", height=500)
chat_plot_output = gr.Plot(label="AI Generated Plot")
with gr.Row():
chat_input = gr.Textbox(label="Your Question", placeholder="e.g., 'Show me the distribution of age'", scale=4)
chat_submit_btn = gr.Button("Submit", variant="primary", scale=1)
chat_clear_btn = gr.Button("Clear Chat")
# --- Event Handlers ---
# File upload triggers data loading and UI updates
file_input.upload(
fn=load_and_process_file,
inputs=[file_input, global_state],
outputs=[global_state, status_output, uni_col_select, bi_x_select, bi_y_select, ts_value_col, ts_time_col, ts_tab, chat_tab]
)
# Tab 1: Overview
overview_btn.click(
fn=analyze_dataset_overview,
inputs=[global_state, api_key_input],
outputs=[story_output, basic_info_output, quality_score]
)
# Tab 2: Univariate
uni_col_select.change(
fn=generate_univariate_plot,
inputs=[uni_col_select, global_state],
outputs=[uni_plot_output, uni_summary_output]
)
# Tab 3: Bivariate
bi_btn.click(
fn=generate_bivariate_plot,
inputs=[bi_x_select, bi_y_select, global_state],
outputs=[bi_plot_output, bi_summary_output]
)
# Tab 4: Time Series
ts_btn.click(
fn=generate_time_series_plot,
inputs=[ts_time_col, ts_value_col, ts_resample, global_state],
outputs=[ts_plot_output, ts_status_output]
)
# Tab 5: AI Chat
chat_submit_btn.click(
fn=respond_to_chat,
inputs=[chat_input, chatbot, global_state, api_key_input],
outputs=[chatbot, chat_plot_output, chat_input]
)
chat_input.submit(
fn=respond_to_chat,
inputs=[chat_input, chatbot, global_state, api_key_input],
outputs=[chatbot, chat_plot_output, chat_input]
)
chat_clear_btn.click(lambda: ([], None, ""), None, [chatbot, chat_plot_output, chat_input])
return demo
# --- Main Application Execution ---
if __name__ == "__main__":
# For local development, you might use load_dotenv()
# load_dotenv()
app = create_gradio_interface()
app.launch(debug=True)