Spaces:
Sleeping
Sleeping
File size: 8,180 Bytes
03e932b f9bd215 03e932b f9bd215 03e932b f9bd215 03e932b f9bd215 03e932b f9bd215 03e932b f9bd215 03e932b f9bd215 03e932b f9bd215 03e932b f9bd215 03e932b f9bd215 03e932b f9bd215 03e932b f9bd215 03e932b f9bd215 03e932b f9bd215 03e932b f9bd215 03e932b f9bd215 03e932b f9bd215 03e932b f9bd215 03e932b f9bd215 03e932b f9bd215 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 |
import os
import re
import base64
import gradio as gr
import pdfplumber # For PDF document parsing
import fitz # PyMuPDF for advanced PDF handling (alternative to pdfplumber)
import pytesseract # OCR for extracting text from images
from PIL import Image
from io import BytesIO
from transformers import pipeline # For semantic analysis tasks
from huggingface_hub import InferenceClient
from mistralai import Mistral
# Initialize inference clients for different models
client = InferenceClient(api_key=os.getenv('HF_TOKEN'))
client.headers["x-use-cache"] = "0"
api_key = os.getenv("MISTRAL_API_KEY")
Mistralclient = Mistral(api_key=api_key)
# Initialize semantic analysis pipelines using transformers (for local tasks)
# Example: summarization, sentiment-analysis, named-entity-recognition, etc.
summarizer = pipeline("summarization")
sentiment_analyzer = pipeline("sentiment-analysis")
ner_tagger = pipeline("ner")
def encode_image(image_path):
"""Resizes and encodes an image to base64."""
try:
image = Image.open(image_path).convert("RGB")
base_height = 512
h_percent = (base_height / float(image.size[1]))
w_size = int((float(image.size[0]) * float(h_percent)))
image = image.resize((w_size, base_height), Image.LANCZOS)
buffered = BytesIO()
image.save(buffered, format="JPEG")
return base64.b64encode(buffered.getvalue()).decode("utf-8")
except Exception as e:
print(f"Image encoding error: {e}")
return None
def extract_text_from_document(file_path):
"""Extracts text from a PDF or image document."""
text = ""
# Try PDF parsing with pdfplumber
if file_path.lower().endswith(".pdf"):
try:
with pdfplumber.open(file_path) as pdf:
for page in pdf.pages:
text += page.extract_text() + "\n"
return text.strip()
except Exception as e:
print(f"PDF parsing error: {e}")
# If not PDF or parsing fails, attempt OCR on the first page of an image-based PDF or an image file.
try:
# Open the file as an image for OCR
image = Image.open(file_path)
text = pytesseract.image_to_string(image)
except Exception as e:
print(f"OCR error: {e}")
return text.strip()
def perform_semantic_analysis(text, analysis_type):
"""Applies semantic analysis tasks to the provided text."""
if analysis_type == "Summarization":
return summarizer(text, max_length=150, min_length=40, do_sample=False)[0]['summary_text']
elif analysis_type == "Sentiment Analysis":
return sentiment_analyzer(text)[0]
elif analysis_type == "Named Entity Recognition":
return ner_tagger(text)
# Add more analysis types as needed
return text
def process_text_input(message_text, history, model_choice, analysis_type):
"""
Process text-based inputs using selected model and apply semantic analysis if requested.
"""
# Optionally perform semantic analysis before sending to the model
if analysis_type and analysis_type != "None":
analysis_result = perform_semantic_analysis(message_text, analysis_type)
# Incorporate analysis_result into prompt or display separately
message_text += f"\n\n[Analysis Result]: {analysis_result}"
# Construct a prompt for model inference
input_prompt = [{"role": "user", "content": message_text}]
if model_choice == "mistralai/Mistral-Nemo-Instruct-2411":
model = "mistral-large-2411"
stream_response = Mistralclient.chat.stream(model=model, messages=input_prompt)
for chunk in stream_response:
if chunk.data.choices[0].delta.content:
yield chunk.data.choices[0].delta.content
else:
stream = client.chat.completions.create(
model=model_choice,
messages=input_prompt,
temperature=0.5,
max_tokens=1024,
top_p=0.7,
stream=True
)
temp = ""
for chunk in stream:
if chunk.choices[0].delta.content:
temp += chunk.choices[0].delta.content
yield temp
def process_image_input(image_file, message_text, image_mod, model_choice, analysis_type):
"""
Process image-based inputs using selected model and mode.
Applies OCR if needed and semantic analysis.
"""
# Save uploaded image temporarily to extract text if necessary
temp_image_path = "temp_upload.jpg"
image_file.save(temp_image_path)
# Extract text from document/image using OCR if needed
extracted_text = extract_text_from_document(temp_image_path)
if extracted_text:
message_text += f"\n\n[Extracted Text]: {extracted_text}"
# Optionally perform semantic analysis on the extracted text
if analysis_type and analysis_type != "None":
analysis_result = perform_semantic_analysis(extracted_text, analysis_type)
message_text += f"\n\n[Analysis Result]: {analysis_result}"
base64_image = encode_image(temp_image_path)
if not base64_image:
yield "Failed to process image."
return
messages = [{
"role": "user",
"content": [
{"type": "text", "text": message_text},
{"type": "image_url", "image_url": f"data:image/jpeg;base64,{base64_image}"}
]
}]
if image_mod == "Vision":
stream = client.chat.completions.create(
model="meta-llama/Llama-3.2-11B-Vision-Instruct",
messages=messages,
max_tokens=500,
stream=True
)
temp = ""
for chunk in stream:
if chunk.choices[0].delta.content:
temp += chunk.choices[0].delta.content
yield temp
else:
model = "pixtral-large-2411"
partial_message = ""
for chunk in Mistralclient.chat.stream(model=model, messages=messages):
if chunk.data.choices[0].delta.content:
partial_message += chunk.data.choices[0].delta.content
yield partial_message
def multimodal_response(message, history, analyzer_mode, model_choice, image_mod, analysis_type):
"""
Main response function that handles text and image inputs, applies parsing, OCR, and semantic analysis.
"""
message_text = message.get("text", "")
message_files = message.get("files", [])
if message_files:
# If an image/document is uploaded, process it
image_file = message_files[0]
yield from process_image_input(image_file, message_text, image_mod, model_choice, analysis_type)
else:
# Process plain text inputs
yield from process_text_input(message_text, history, model_choice, analysis_type)
# Set up the Gradio interface with additional user customization options
MultiModalAnalyzer = gr.ChatInterface(
fn=multimodal_response,
type="messages",
multimodal=True,
additional_inputs=[
gr.Checkbox(label="Enable Analyzer Mode", value=True),
gr.Dropdown(
choices=[
"meta-llama/Llama-3.3-70B-Instruct",
"CohereForAI/c4ai-command-r-plus-08-2024",
"Qwen/Qwen2.5-72B-Instruct",
"nvidia/Llama-3.1-Nemotron-70B-Instruct-HF",
"NousResearch/Hermes-3-Llama-3.1-8B",
"mistralai/Mistral-Nemo-Instruct-2411",
"microsoft/phi-4"
],
value="mistralai/Mistral-Nemo-Instruct-2411",
show_label=False,
container=False
),
gr.Radio(
choices=["pixtral", "Vision"],
value="pixtral",
show_label=False,
container=False
),
gr.Dropdown(
choices=["None", "Summarization", "Sentiment Analysis", "Named Entity Recognition"],
value="None",
label="Select Analysis Type",
container=False
)
],
title="MultiModal Analyzer",
description="Upload documents or images, select a model and analysis type to interact with your content."
)
MultiModalAnalyzer.launch()
|