File size: 48,312 Bytes
788074d
 
 
4258926
896de2d
 
63b0a52
4258926
 
31ea2bf
4258926
 
9c32b8a
4258926
 
31ea2bf
fc636ce
31ea2bf
896de2d
4258926
896de2d
31ea2bf
896de2d
 
 
 
31ea2bf
896de2d
4258926
 
896de2d
4258926
31ea2bf
4258926
31ea2bf
896de2d
 
4258926
896de2d
4258926
896de2d
 
 
 
31ea2bf
 
 
896de2d
 
31ea2bf
 
 
896de2d
 
31ea2bf
4258926
896de2d
 
31ea2bf
 
 
4258926
31ea2bf
896de2d
 
31ea2bf
896de2d
4258926
 
 
31ea2bf
 
 
 
 
 
896de2d
 
 
31ea2bf
 
 
896de2d
 
 
31ea2bf
 
 
 
 
896de2d
 
 
31ea2bf
896de2d
31ea2bf
 
896de2d
 
 
31ea2bf
 
4258926
31ea2bf
4258926
 
 
31ea2bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
896de2d
31ea2bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
896de2d
 
31ea2bf
4258926
31ea2bf
896de2d
31ea2bf
 
896de2d
 
 
 
 
31ea2bf
 
 
 
 
 
 
896de2d
 
 
31ea2bf
 
 
 
896de2d
 
 
 
31ea2bf
 
 
 
 
 
 
 
 
896de2d
 
31ea2bf
 
 
 
 
 
 
 
896de2d
 
31ea2bf
896de2d
31ea2bf
896de2d
 
 
31ea2bf
 
 
 
 
 
 
 
 
 
 
4258926
31ea2bf
4258926
31ea2bf
 
 
4258926
 
896de2d
31ea2bf
896de2d
31ea2bf
896de2d
31ea2bf
896de2d
 
31ea2bf
 
 
4258926
 
31ea2bf
 
4258926
896de2d
 
 
 
 
 
 
 
 
31ea2bf
4258926
 
31ea2bf
 
 
 
896de2d
 
31ea2bf
 
 
 
4258926
 
 
 
 
 
31ea2bf
4258926
 
 
 
 
 
 
 
 
 
 
 
 
 
31ea2bf
 
 
4258926
31ea2bf
 
4258926
 
 
 
 
 
31ea2bf
4258926
31ea2bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4258926
 
31ea2bf
4258926
 
31ea2bf
 
4258926
31ea2bf
 
 
 
 
 
 
 
4258926
 
31ea2bf
4258926
31ea2bf
 
 
4258926
31ea2bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4258926
31ea2bf
 
 
4258926
 
31ea2bf
 
 
4258926
31ea2bf
 
 
4258926
31ea2bf
4258926
 
31ea2bf
 
4258926
31ea2bf
 
4258926
 
31ea2bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4258926
 
 
 
 
31ea2bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4258926
31ea2bf
4258926
31ea2bf
4258926
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31ea2bf
4258926
 
 
 
 
 
 
 
 
 
31ea2bf
4258926
31ea2bf
4258926
 
 
 
 
31ea2bf
4258926
31ea2bf
4258926
 
 
31ea2bf
4258926
31ea2bf
4258926
 
 
31ea2bf
4258926
 
 
31ea2bf
4258926
31ea2bf
 
4258926
31ea2bf
 
4258926
 
31ea2bf
4258926
31ea2bf
4258926
31ea2bf
4258926
 
 
31ea2bf
4258926
 
 
 
 
 
 
 
 
31ea2bf
4258926
 
 
 
31ea2bf
4258926
 
 
 
31ea2bf
 
 
 
 
 
 
 
 
 
 
 
4258926
 
 
 
 
 
 
 
 
 
 
 
 
 
31ea2bf
4258926
31ea2bf
 
 
 
4258926
 
31ea2bf
 
4258926
 
31ea2bf
4258926
 
 
 
31ea2bf
 
 
4258926
31ea2bf
4258926
 
31ea2bf
 
 
4258926
31ea2bf
 
896de2d
31ea2bf
 
896de2d
31ea2bf
 
 
 
 
 
 
 
 
 
 
896de2d
31ea2bf
 
4258926
 
31ea2bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4258926
 
31ea2bf
 
 
 
 
 
4258926
 
31ea2bf
 
 
4258926
31ea2bf
4258926
 
 
 
 
 
 
31ea2bf
4258926
31ea2bf
 
 
4258926
 
31ea2bf
4258926
 
 
896de2d
31ea2bf
 
 
 
 
896de2d
31ea2bf
4258926
 
 
31ea2bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
896de2d
31ea2bf
 
 
 
 
b564942
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
import streamlit as st
from langchain_groq import ChatGroq
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_core.messages import HumanMessage, SystemMessage, AIMessage, ToolMessage
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.pydantic_v1 import BaseModel, Field
from langchain_core.tools import tool
from langgraph.prebuilt import ToolExecutor
from langgraph.graph import StateGraph, END
# from langgraph.checkpoint.memory import MemorySaverInMemory # Optional for state persistence

from typing import Optional, List, Dict, Any, TypedDict, Annotated
import json
import re
import operator
import traceback # For detailed error logging

# --- Configuration & Constants ---
class ClinicalAppSettings:
    APP_TITLE = "SynapseAI: Interactive Clinical Decision Support"
    PAGE_LAYOUT = "wide"
    MODEL_NAME = "llama3-70b-8192" # Groq Llama3 70b
    TEMPERATURE = 0.1
    MAX_SEARCH_RESULTS = 3

class ClinicalPrompts:
    # UPDATED SYSTEM PROMPT FOR CONVERSATIONAL FLOW, GUIDELINES & STRUCTURED OUTPUT FOCUS
    SYSTEM_PROMPT = """
    You are SynapseAI, an expert AI clinical assistant engaged in an interactive consultation.
    Your goal is to support healthcare professionals by analyzing patient data, providing differential diagnoses, suggesting evidence-based management plans, and identifying risks according to current standards of care.

    **Core Directives for this Conversation:**
    1.  **Analyze Sequentially:** Process information turn-by-turn. Base your responses on the *entire* conversation history.
    2.  **Seek Clarity:** If the provided information is insufficient or ambiguous for a safe assessment, CLEARLY STATE what specific additional information or clarification is needed. Do NOT guess or make unsafe assumptions.
    3.  **Structured Assessment (When Ready):** When you have sufficient information and have performed necessary checks (like interactions, guideline searches), provide a comprehensive assessment using the following JSON structure. Output this JSON structure as the primary content of your response when you are providing the full analysis. Do NOT output incomplete JSON. If you need to ask a question or perform a tool call first, do that instead of outputting this structure.
        ```json
        {
          "assessment": "Concise summary of the patient's presentation and key findings based on the conversation.",
          "differential_diagnosis": [
            {"diagnosis": "Primary Diagnosis", "likelihood": "High/Medium/Low", "rationale": "Supporting evidence from conversation..."},
            {"diagnosis": "Alternative Diagnosis 1", "likelihood": "Medium/Low", "rationale": "Supporting/Refuting evidence..."},
            {"diagnosis": "Alternative Diagnosis 2", "likelihood": "Low", "rationale": "Why it's less likely but considered..."}
          ],
          "risk_assessment": {
            "identified_red_flags": ["List any triggered red flags based on input and analysis"],
            "immediate_concerns": ["Specific urgent issues requiring attention (e.g., sepsis risk, ACS rule-out)"],
            "potential_complications": ["Possible future issues based on presentation"]
          },
          "recommended_plan": {
            "investigations": ["List specific lab tests or imaging required. Use 'order_lab_test' tool."],
            "therapeutics": ["Suggest specific treatments or prescriptions. Use 'prescribe_medication' tool. MUST check interactions first using 'check_drug_interactions'."],
            "consultations": ["Recommend specialist consultations if needed."],
            "patient_education": ["Key points for patient communication."]
          },
          "rationale_summary": "Justification for assessment/plan. **Crucially, if relevant (e.g., ACS, sepsis, common infections), use 'tavily_search_results' to find and cite current clinical practice guidelines (e.g., 'latest ACC/AHA chest pain guidelines 202X', 'Surviving Sepsis Campaign guidelines') supporting your recommendations.** Include summary of guideline findings here.",
          "interaction_check_summary": "Summary of findings from 'check_drug_interactions' if performed."
        }
        ```
    4.  **Safety First - Interactions:** BEFORE suggesting a new prescription via `prescribe_medication`, you MUST FIRST use `check_drug_interactions` in a preceding or concurrent tool call. Report the findings from the interaction check. If significant interactions exist, modify the plan or state the contraindication clearly.
    5.  **Safety First - Red Flags:** Use the `flag_risk` tool IMMEDIATELY if critical red flags requiring urgent action are identified at any point in the conversation.
    6.  **Tool Use:** Employ tools (`order_lab_test`, `prescribe_medication`, `check_drug_interactions`, `flag_risk`, `tavily_search_results`) logically within the conversational flow. Wait for tool results before proceeding if the result is needed for the next step (e.g., wait for interaction check before confirming prescription in the structured JSON).
    7.  **Evidence & Guidelines:** Actively use `tavily_search_results` not just for general knowledge, but specifically to query for and incorporate **current clinical practice guidelines** relevant to the patient's presentation (e.g., chest pain, shortness of breath, suspected infection). Summarize findings in the `rationale_summary` when providing the structured output.
    8.  **Conciseness & Flow:** Be medically accurate and concise. Use standard terminology. Respond naturally in conversation (asking questions, acknowledging info) until ready for the full structured JSON output.
    """

# --- Mock Data / Helpers ---
MOCK_INTERACTION_DB = {
    ("lisinopril", "spironolactone"): "High risk of hyperkalemia. Monitor potassium closely.",
    ("warfarin", "amiodarone"): "Increased bleeding risk. Monitor INR frequently and adjust Warfarin dose.",
    ("simvastatin", "clarithromycin"): "Increased risk of myopathy/rhabdomyolysis. Avoid combination or use lower statin dose.",
    ("aspirin", "ibuprofen"): "Concurrent use may decrease Aspirin's cardioprotective effect. Potential for increased GI bleeding.",
    # Add lower case versions for easier lookup
    ("amiodarone", "warfarin"): "Increased bleeding risk. Monitor INR frequently and adjust Warfarin dose.",
    ("clarithromycin", "simvastatin"): "Increased risk of myopathy/rhabdomyolysis. Avoid combination or use lower statin dose.",
    ("ibuprofen", "aspirin"): "Concurrent use may decrease Aspirin's cardioprotective effect. Potential for increased GI bleeding.",
    ("spironolactone", "lisinopril"): "High risk of hyperkalemia. Monitor potassium closely.",
}

ALLERGY_INTERACTIONS = {
    "penicillin": ["amoxicillin", "ampicillin", "piperacillin", "augmentin"],
    "sulfa": ["sulfamethoxazole", "sulfasalazine", "bactrim"],
    "aspirin": ["ibuprofen", "naproxen", "nsaid"] # Cross-reactivity example for NSAIDs
}

def parse_bp(bp_string: str) -> Optional[tuple[int, int]]:
    """Parses BP string like '120/80' into (systolic, diastolic) integers."""
    if not isinstance(bp_string, str): return None
    match = re.match(r"(\d{1,3})\s*/\s*(\d{1,3})", bp_string.strip())
    if match:
        return int(match.group(1)), int(match.group(2))
    return None

def check_red_flags(patient_data: dict) -> List[str]:
    """Checks patient data against predefined red flags."""
    flags = []
    if not patient_data: return flags

    symptoms = patient_data.get("hpi", {}).get("symptoms", [])
    vitals = patient_data.get("vitals", {})
    history = patient_data.get("pmh", {}).get("conditions", "")
    # Ensure symptoms are strings and lowercased
    symptoms_lower = [str(s).lower() for s in symptoms if isinstance(s, str)]

    # Symptom Flags
    if "chest pain" in symptoms_lower: flags.append("Red Flag: Chest Pain reported.")
    if "shortness of breath" in symptoms_lower: flags.append("Red Flag: Shortness of Breath reported.")
    if "severe headache" in symptoms_lower: flags.append("Red Flag: Severe Headache reported.")
    if "sudden vision loss" in symptoms_lower: flags.append("Red Flag: Sudden Vision Loss reported.")
    if "weakness on one side" in symptoms_lower: flags.append("Red Flag: Unilateral Weakness reported (potential stroke).")
    if "hemoptysis" in symptoms_lower: flags.append("Red Flag: Hemoptysis (coughing up blood).")
    if "syncope" in symptoms_lower: flags.append("Red Flag: Syncope (fainting).")

    # Vital Sign Flags
    if vitals:
        temp = vitals.get("temp_c")
        hr = vitals.get("hr_bpm")
        rr = vitals.get("rr_rpm")
        spo2 = vitals.get("spo2_percent")
        bp_str = vitals.get("bp_mmhg")

        if temp is not None and temp >= 38.5: flags.append(f"Red Flag: Fever (Temperature: {temp}Β°C).")
        if hr is not None and hr >= 120: flags.append(f"Red Flag: Tachycardia (Heart Rate: {hr} bpm).")
        if hr is not None and hr <= 50: flags.append(f"Red Flag: Bradycardia (Heart Rate: {hr} bpm).")
        if rr is not None and rr >= 24: flags.append(f"Red Flag: Tachypnea (Respiratory Rate: {rr} rpm).")
        if spo2 is not None and spo2 <= 92: flags.append(f"Red Flag: Hypoxia (SpO2: {spo2}%).")
        if bp_str:
            bp = parse_bp(bp_str)
            if bp:
                if bp[0] >= 180 or bp[1] >= 110: flags.append(f"Red Flag: Hypertensive Urgency/Emergency (BP: {bp_str} mmHg).")
                if bp[0] <= 90 or bp[1] <= 60: flags.append(f"Red Flag: Hypotension (BP: {bp_str} mmHg).")

    # History Flags (Simple examples)
    if history and "history of mi" in history.lower() and "chest pain" in symptoms_lower:
        flags.append("Red Flag: History of MI with current Chest Pain.")
    if history and "history of dvt/pe" in history.lower() and "shortness of breath" in symptoms_lower:
         flags.append("Red Flag: History of DVT/PE with current Shortness of Breath.")

    # Remove duplicates
    return list(set(flags))

def format_patient_data_for_prompt(data: dict) -> str:
    """Formats the patient dictionary into a readable string for the LLM."""
    if not data: return "No patient data provided."
    prompt_str = ""
    for key, value in data.items():
        section_title = key.replace('_', ' ').title()
        if isinstance(value, dict) and value:
            has_content = any(sub_value for sub_value in value.values())
            if has_content:
                prompt_str += f"**{section_title}:**\n"
                for sub_key, sub_value in value.items():
                     if sub_value:
                        prompt_str += f"  - {sub_key.replace('_', ' ').title()}: {sub_value}\n"
        elif isinstance(value, list) and value:
             prompt_str += f"**{section_title}:** {', '.join(map(str, value))}\n"
        elif value and not isinstance(value, dict): # Check it's not an empty dict
             prompt_str += f"**{section_title}:** {value}\n"
    return prompt_str.strip()


# --- Tool Definitions ---

# Pydantic models for robust argument validation
class LabOrderInput(BaseModel):
    test_name: str = Field(..., description="Specific name of the lab test or panel (e.g., 'CBC', 'BMP', 'Troponin I', 'Urinalysis', 'D-dimer').")
    reason: str = Field(..., description="Clinical justification for ordering the test (e.g., 'Rule out infection', 'Assess renal function', 'Evaluate for ACS', 'Assess for PE').")
    priority: str = Field("Routine", description="Priority of the test (e.g., 'STAT', 'Routine').")

@tool("order_lab_test", args_schema=LabOrderInput)
def order_lab_test(test_name: str, reason: str, priority: str = "Routine") -> str:
    """Orders a specific lab test with clinical justification and priority."""
    print(f"Executing order_lab_test: {test_name}, Reason: {reason}, Priority: {priority}")
    # In a real system, this would integrate with an LIS/EMR API
    return json.dumps({
        "status": "success",
        "message": f"Lab Ordered: {test_name} ({priority})",
        "details": f"Reason: {reason}"
    })

class PrescriptionInput(BaseModel):
    medication_name: str = Field(..., description="Name of the medication.")
    dosage: str = Field(..., description="Dosage amount and unit (e.g., '500 mg', '10 mg', '81 mg').")
    route: str = Field(..., description="Route of administration (e.g., 'PO', 'IV', 'IM', 'Topical', 'SL').")
    frequency: str = Field(..., description="How often the medication should be taken (e.g., 'BID', 'QDaily', 'Q4-6H PRN', 'once').")
    duration: str = Field("As directed", description="Duration of treatment (e.g., '7 days', '1 month', 'Ongoing', 'Until follow-up').")
    reason: str = Field(..., description="Clinical indication for the prescription.")

@tool("prescribe_medication", args_schema=PrescriptionInput)
def prescribe_medication(medication_name: str, dosage: str, route: str, frequency: str, duration: str, reason: str) -> str:
    """Prescribes a medication with detailed instructions and clinical indication. IMPORTANT: Requires prior interaction check."""
    print(f"Executing prescribe_medication: {medication_name} {dosage}...")
    # NOTE: The safety check (ensuring interaction check was requested) happens in the tool_node *before* this function is called.
    # In a real system, this would trigger an e-prescription workflow.
    return json.dumps({
        "status": "success",
        "message": f"Prescription Prepared: {medication_name} {dosage} {route} {frequency}",
        "details": f"Duration: {duration}. Reason: {reason}"
    })

class InteractionCheckInput(BaseModel):
    potential_prescription: str = Field(..., description="The name of the NEW medication being considered for prescribing.")
    # These next two args are now populated by the tool_node using AgentState
    # current_medications: List[str] = Field(..., description="List of the patient's CURRENT medication names.")
    # allergies: List[str] = Field(..., description="List of the patient's known allergies.")
    # Make them optional in the schema, mandatory in the node logic
    current_medications: Optional[List[str]] = Field(None, description="List of patient's current medication names (populated from state).")
    allergies: Optional[List[str]] = Field(None, description="List of patient's known allergies (populated from state).")


@tool("check_drug_interactions", args_schema=InteractionCheckInput)
def check_drug_interactions(potential_prescription: str, current_medications: Optional[List[str]] = None, allergies: Optional[List[str]] = None) -> str:
    """Checks for potential drug-drug and drug-allergy interactions BEFORE prescribing."""
    print(f"Executing check_drug_interactions for: {potential_prescription}")
    warnings = []
    potential_med_lower = potential_prescription.lower()

    # Use provided lists or default to empty if None (should be populated by tool_node)
    current_meds_list = current_medications or []
    allergies_list = allergies or []

    current_meds_lower = [str(med).lower() for med in current_meds_list]
    allergies_lower = [str(a).lower() for a in allergies_list]

    print(f"  Checking against Meds: {current_meds_lower}")
    print(f"  Checking against Allergies: {allergies_lower}")

    # Check Allergies
    for allergy in allergies_lower:
        # Direct match
        if allergy == potential_med_lower:
            warnings.append(f"CRITICAL ALLERGY: Patient allergic to '{allergy}'. Cannot prescribe '{potential_prescription}'.")
            continue # Don't check cross-reactivity if direct match
        # Check cross-reactivity
        if allergy in ALLERGY_INTERACTIONS:
            for cross_reactant in ALLERGY_INTERACTIONS[allergy]:
                if cross_reactant.lower() == potential_med_lower:
                    warnings.append(f"POTENTIAL CROSS-ALLERGY: Patient allergic to '{allergy}'. High risk with '{potential_prescription}'.")

    # Check Drug-Drug Interactions
    for current_med in current_meds_lower:
        # Check pairs in both orders using the mock DB
        pair1 = (current_med, potential_med_lower)
        pair2 = (potential_med_lower, current_med)
        interaction_msg = MOCK_INTERACTION_DB.get(pair1) or MOCK_INTERACTION_DB.get(pair2)
        if interaction_msg:
            warnings.append(f"Interaction: {potential_prescription.capitalize()} with {current_med.capitalize()} - {interaction_msg}")

    status = "warning" if warnings else "clear"
    message = f"Interaction check for '{potential_prescription}': {len(warnings)} potential issue(s) found." if warnings else f"No major interactions identified for '{potential_prescription}' based on provided lists."
    print(f"  Interaction Check Result: {status}, Message: {message}, Warnings: {warnings}")
    return json.dumps({"status": status, "message": message, "warnings": warnings})


class FlagRiskInput(BaseModel):
    risk_description: str = Field(..., description="Specific critical risk identified (e.g., 'Suspected Sepsis', 'Acute Coronary Syndrome', 'Stroke Alert').")
    urgency: str = Field("High", description="Urgency level (e.g., 'Critical', 'High', 'Moderate').")

@tool("flag_risk", args_schema=FlagRiskInput)
def flag_risk(risk_description: str, urgency: str) -> str:
    """Flags a critical risk identified during analysis for immediate attention."""
    print(f"Executing flag_risk: {risk_description}, Urgency: {urgency}")
    # Display in Streamlit immediately
    st.error(f"🚨 **{urgency.upper()} RISK FLAGGED by AI:** {risk_description}", icon="🚨")
    return json.dumps({
        "status": "flagged",
        "message": f"Risk '{risk_description}' flagged with {urgency} urgency."
    })

# Initialize Search Tool
search_tool = TavilySearchResults(
    max_results=ClinicalAppSettings.MAX_SEARCH_RESULTS,
    name="tavily_search_results" # Explicitly name the tool
    )

# --- LangGraph Setup ---

# Define the state structure
class AgentState(TypedDict):
    messages: Annotated[list[Any], operator.add] # Accumulates messages (Human, AI, Tool)
    patient_data: Optional[dict] # Holds the structured patient data

# Define Tools and Tool Executor
tools = [
    order_lab_test,
    prescribe_medication,
    check_drug_interactions,
    flag_risk,
    search_tool
]
tool_executor = ToolExecutor(tools)

# Define the Agent Model
model = ChatGroq(
    temperature=ClinicalAppSettings.TEMPERATURE,
    model=ClinicalAppSettings.MODEL_NAME,
    # Increase max_tokens if needed for large JSON output + conversation history
    # max_tokens=4096
)
# Bind tools FOR the model to know their schemas and descriptions
model_with_tools = model.bind_tools(tools)

# --- Graph Nodes ---

# 1. Agent Node: Calls the LLM
def agent_node(state: AgentState):
    """Invokes the LLM to decide the next action or response."""
    print("\n---AGENT NODE---")
    current_messages = state['messages']
    # Ensure System Prompt is present
    if not current_messages or not isinstance(current_messages[0], SystemMessage):
        print("Prepending System Prompt.")
        current_messages = [SystemMessage(content=ClinicalPrompts.SYSTEM_PROMPT)] + current_messages

    # Optional: Augment first human message with patient data if not already done explicitly
    # This helps ensure the LLM sees it early, though it's also in the state.
    # Be mindful of context window limits.
    # if len(current_messages) > 1 and isinstance(current_messages[1], HumanMessage) and state.get('patient_data'):
    #     if "**Initial Patient Data:**" not in current_messages[1].content:
    #         print("Augmenting first HumanMessage with patient data summary.")
    #         formatted_data = format_patient_data_for_prompt(state['patient_data'])
    #         current_messages[1] = HumanMessage(content=f"{current_messages[1].content}\n\n**Initial Patient Data Summary:**\n{formatted_data}")

    print(f"Invoking LLM with {len(current_messages)} messages.")
    # print(f"Messages Sent: {[m.type for m in current_messages]}") # Log message types
    try:
        response = model_with_tools.invoke(current_messages)
        print(f"Agent Raw Response Type: {type(response)}")
        # print(f"Agent Raw Response Content: {response.content}")
        if hasattr(response, 'tool_calls') and response.tool_calls:
             print(f"Agent Response Tool Calls: {response.tool_calls}")
        else:
             print("Agent Response: No tool calls.")

    except Exception as e:
        print(f"ERROR in agent_node during LLM invocation: {type(e).__name__} - {e}")
        traceback.print_exc() # Print full traceback for debugging
        # Return an error message to the graph state
        error_message = AIMessage(content=f"Sorry, an internal error occurred while processing the request: {type(e).__name__}")
        return {"messages": [error_message]}

    return {"messages": [response]}

# 2. Tool Node: Executes tools called by the Agent (REVISED WITH ROBUST ERROR HANDLING)
def tool_node(state: AgentState):
    """Executes tools called by the LLM and returns results."""
    print("\n---TOOL NODE---")
    tool_messages = [] # Initialize list to store results or errors
    last_message = state['messages'][-1]

    # Ensure the last message is an AIMessage with tool calls
    if not isinstance(last_message, AIMessage) or not getattr(last_message, 'tool_calls', None):
        print("Warning: Tool node called unexpectedly without tool calls in the last AI message.")
        # If this happens, it might indicate a routing issue or the LLM hallucinating flow.
        # Returning empty list lets the agent proceed, potentially without needed info.
        # Consider adding a ToolMessage indicating the issue if needed.
        return {"messages": []}

    tool_calls = last_message.tool_calls
    print(f"Tool calls received: {json.dumps(tool_calls, indent=2)}") # Log received calls

    # Safety Check: Identify required interaction checks before prescriptions
    prescriptions_requested = {} # medication_name_lower -> tool_call
    interaction_checks_requested = {} # medication_name_lower -> tool_call

    for call in tool_calls:
        tool_name = call.get('name')
        tool_args = call.get('args', {})
        if tool_name == 'prescribe_medication':
            med_name = tool_args.get('medication_name', '').lower()
            if med_name:
                prescriptions_requested[med_name] = call
        elif tool_name == 'check_drug_interactions':
            potential_med = tool_args.get('potential_prescription', '').lower()
            if potential_med:
                interaction_checks_requested[potential_med] = call

    valid_tool_calls_for_execution = []

    # Validate prescriptions against interaction checks
    for med_name, prescribe_call in prescriptions_requested.items():
        if med_name not in interaction_checks_requested:
            st.error(f"**Safety Violation:** AI attempted to prescribe '{med_name}' without requesting `check_drug_interactions` in the *same turn*. Prescription blocked.")
            error_msg = ToolMessage(
                content=json.dumps({"status": "error", "message": f"Interaction check for '{med_name}' must be requested *before or alongside* the prescription call."}),
                tool_call_id=prescribe_call['id'],
                name=prescribe_call['name'] # Include tool name in ToolMessage
            )
            tool_messages.append(error_msg)
        else:
             # Interaction check IS requested, allow prescription call to proceed
             pass # The call will be added below if it's in the original tool_calls list

    # Prepare list of calls to execute (all non-blocked calls)
    blocked_ids = {msg.tool_call_id for msg in tool_messages if msg.content and '"status": "error"' in msg.content}
    valid_tool_calls_for_execution = [call for call in tool_calls if call['id'] not in blocked_ids]

    # Augment interaction checks with patient data from state
    patient_meds = state.get("patient_data", {}).get("medications", {}).get("names_only", [])
    patient_allergies = state.get("patient_data", {}).get("allergies", [])

    for call in valid_tool_calls_for_execution:
         if call['name'] == 'check_drug_interactions':
             # Ensure args exist before modifying
             if 'args' not in call: call['args'] = {}
             call['args']['current_medications'] = patient_meds
             call['args']['allergies'] = patient_allergies
             print(f"Augmented interaction check args for call ID {call['id']}: {call['args']}")


    # Execute valid tool calls using batch for efficiency, capturing exceptions
    if valid_tool_calls_for_execution:
        print(f"Attempting to execute {len(valid_tool_calls_for_execution)} tools: {[c['name'] for c in valid_tool_calls_for_execution]}")
        try:
            responses = tool_executor.batch(valid_tool_calls_for_execution, return_exceptions=True)

            # Process responses, creating ToolMessage for each
            for call, resp in zip(valid_tool_calls_for_execution, responses):
                tool_call_id = call['id']
                tool_name = call['name']

                if isinstance(resp, Exception):
                    # Handle exceptions returned by the batch call
                    error_type = type(resp).__name__
                    error_str = str(resp)
                    print(f"ERROR executing tool '{tool_name}' (ID: {tool_call_id}): {error_type} - {error_str}")
                    traceback.print_exc() # Log full traceback
                    st.error(f"Error executing action '{tool_name}': {error_type}")
                    error_content = json.dumps({
                        "status": "error",
                        "message": f"Failed to execute '{tool_name}': {error_type} - {error_str}"
                    })
                    tool_messages.append(ToolMessage(content=error_content, tool_call_id=tool_call_id, name=tool_name))

                    # Specific check for the error mentioned by user
                    if isinstance(resp, AttributeError) and "'dict' object has no attribute 'tool'" in error_str:
                         print("\n *** DETECTED SPECIFIC ATTRIBUTE ERROR ('dict' object has no attribute 'tool') ***")
                         print(f"   Tool Call causing error: {json.dumps(call, indent=2)}")
                         print("   This likely indicates an internal issue within Langchain/LangGraph or ToolExecutor expecting a different object structure.")
                         print("   Ensure tool definitions (@tool decorators) and Pydantic schemas are correct.\n")

                else:
                    # Process successful results
                    print(f"Tool '{tool_name}' (ID: {tool_call_id}) executed successfully. Result type: {type(resp)}")
                    # Ensure content is string for ToolMessage
                    content_str = str(resp)
                    tool_messages.append(ToolMessage(content=content_str, tool_call_id=tool_call_id, name=tool_name))

                    # Display result in Streamlit right away for feedback (optional, but helpful)
                    # This part might be better handled purely in the UI display loop later
                    # try:
                    #     result_data = json.loads(content_str)
                    #     status = result_data.get("status", "info")
                    #     message = result_data.get("message", content_str)
                    #     if status in ["success", "clear", "flagged"]: st.success(f"Action `{tool_name}` completed: {message}", icon="βœ…" if status != "flagged" else "🚨")
                    #     elif status == "warning": st.warning(f"Action `{tool_name}` completed: {message}", icon="⚠️")
                    #     else: st.info(f"Action `{tool_name}` completed: {message}") # Info for other statuses
                    # except json.JSONDecodeError:
                    #     st.info(f"Action `{tool_name}` completed (non-JSON output).")

        # Catch potential errors within the tool_node logic itself (e.g., preparing calls)
        except Exception as e:
            print(f"CRITICAL UNEXPECTED ERROR within tool_node logic: {type(e).__name__} - {e}")
            traceback.print_exc()
            st.error(f"Critical internal error processing actions: {e}")
            # Create generic error messages for all calls that were intended
            error_content = json.dumps({"status": "error", "message": f"Internal error processing tools: {e}"})
            # Add error messages for calls that didn't get processed yet
            processed_ids = {msg.tool_call_id for msg in tool_messages}
            for call in valid_tool_calls_for_execution:
                 if call['id'] not in processed_ids:
                     tool_messages.append(ToolMessage(content=error_content, tool_call_id=call['id'], name=call['name']))

    print(f"Returning {len(tool_messages)} tool messages.")
    # print(f"Tool messages content snippets: {[m.content[:100] + '...' if len(m.content)>100 else m.content for m in tool_messages]}")
    return {"messages": tool_messages}


# --- Graph Edges (Routing Logic) ---
def should_continue(state: AgentState) -> str:
    """Determines whether to call tools, end the conversation turn, or handle errors."""
    print("\n---ROUTING DECISION---")
    last_message = state['messages'][-1] if state['messages'] else None

    if not isinstance(last_message, AIMessage):
        # This case might happen if the graph starts with a non-AI message or after an error
        print("Routing: Last message not AI. Ending turn.")
        return "end_conversation_turn"

    # If the LLM produced an error message (e.g., during invocation)
    if "Sorry, an internal error occurred" in last_message.content:
         print("Routing: AI returned internal error. Ending turn.")
         return "end_conversation_turn"

    # If the LLM made tool calls, execute them
    if getattr(last_message, 'tool_calls', None):
        print("Routing: AI requested tool calls. Continue to tools node.")
        return "continue_tools"
    # Otherwise, the AI provided a response without tool calls, end the turn
    else:
        print("Routing: AI provided final response or asked question. Ending turn.")
        return "end_conversation_turn"

# --- Graph Definition ---
workflow = StateGraph(AgentState)

# Add nodes
workflow.add_node("agent", agent_node)
workflow.add_node("tools", tool_node)

# Define entry point
workflow.set_entry_point("agent")

# Add conditional edges
workflow.add_conditional_edges(
    "agent",                      # Source node
    should_continue,              # Function to decide the route
    {
        "continue_tools": "tools", # If tool calls exist, go to tools node
        "end_conversation_turn": END # Otherwise, end the graph iteration for this turn
    }
)

# Add edge from tools back to agent
workflow.add_edge("tools", "agent")

# Compile the graph
# memory = MemorySaverInMemory() # Optional: for persisting state across runs
# app = workflow.compile(checkpointer=memory)
app = workflow.compile()
print("LangGraph compiled successfully.")

# --- Streamlit UI ---
def main():
    st.set_page_config(page_title=ClinicalAppSettings.APP_TITLE, layout=ClinicalAppSettings.PAGE_LAYOUT)
    st.title(f"🩺 {ClinicalAppSettings.APP_TITLE}")
    st.caption(f"Interactive Assistant | Powered by Langchain/LangGraph & Groq ({ClinicalAppSettings.MODEL_NAME})")

    # Initialize session state
    if "messages" not in st.session_state:
        st.session_state.messages = [] # Stores full conversation history
    if "patient_data" not in st.session_state:
        st.session_state.patient_data = None
    if "graph_app" not in st.session_state:
        st.session_state.graph_app = app

    # --- Patient Data Input Sidebar ---
    with st.sidebar:
        st.header("πŸ“„ Patient Intake Form")
        # Demographics
        st.subheader("Demographics")
        age = st.number_input("Age", min_value=0, max_value=120, value=55, key="age_input")
        sex = st.selectbox("Biological Sex", ["Male", "Female", "Other/Prefer not to say"], key="sex_input")
        # HPI
        st.subheader("History of Present Illness (HPI)")
        chief_complaint = st.text_input("Chief Complaint", "Chest pain", key="cc_input")
        hpi_details = st.text_area("Detailed HPI", "55 y/o male presents with substernal chest pain started 2 hours ago, described as pressure, radiating to left arm. Associated with nausea and diaphoresis. Pain is 8/10 severity. No relief with rest.", key="hpi_input", height=150)
        symptoms = st.multiselect("Associated Symptoms", ["Nausea", "Diaphoresis", "Shortness of Breath", "Dizziness", "Palpitations", "Fever", "Cough", "Severe Headache", "Syncope", "Hemoptysis"], default=["Nausea", "Diaphoresis"], key="sym_input")
        # History
        st.subheader("Past History")
        pmh = st.text_area("Past Medical History (PMH)", "Hypertension (HTN), Hyperlipidemia (HLD), Type 2 Diabetes Mellitus (DM2), History of MI", key="pmh_input")
        psh = st.text_area("Past Surgical History (PSH)", "Appendectomy (2005)", key="psh_input")
        # Meds & Allergies
        st.subheader("Medications & Allergies")
        current_meds_str = st.text_area("Current Medications (name, dose, freq)", "Lisinopril 10mg daily\nMetformin 1000mg BID\nAtorvastatin 40mg daily\nAspirin 81mg daily", key="meds_input")
        allergies_str = st.text_area("Allergies (comma separated, specify reaction if known)", "Penicillin (rash), Sulfa (hives)", key="allergy_input")
        # Social/Family
        st.subheader("Social/Family History")
        social_history = st.text_area("Social History (SH)", "Smoker (1 ppd x 30 years), occasional alcohol.", key="sh_input")
        family_history = st.text_area("Family History (FHx)", "Father had MI at age 60. Mother has HTN.", key="fhx_input")
        # Vitals/Exam
        st.subheader("Vitals & Exam Findings")
        col1, col2 = st.columns(2)
        with col1:
            temp_c = st.number_input("Temp (Β°C)", 35.0, 42.0, 36.8, format="%.1f", key="temp_input")
            hr_bpm = st.number_input("HR (bpm)", 30, 250, 95, key="hr_input")
            rr_rpm = st.number_input("RR (rpm)", 5, 50, 18, key="rr_input")
        with col2:
            bp_mmhg = st.text_input("BP (SYS/DIA)", "155/90", key="bp_input")
            spo2_percent = st.number_input("SpO2 (%)", 70, 100, 96, key="spo2_input")
            pain_scale = st.slider("Pain (0-10)", 0, 10, 8, key="pain_input")
        exam_notes = st.text_area("Brief Physical Exam Notes", "Awake, alert, oriented x3. Mild distress. Lungs clear bilaterally. Cardiac exam: Regular rhythm, S1/S2 normal, no murmurs/gallops/rubs. Abdomen soft, non-tender. No lower extremity edema.", key="exam_input", height=100)

        # Compile Patient Data Dictionary on button press
        if st.button("Start/Update Consultation", key="start_button"):
            current_meds_list = [med.strip() for med in current_meds_str.split('\n') if med.strip()]
            # Basic name extraction (first word, lowercased) for interaction check
            current_med_names = []
            for med in current_meds_list:
                match = re.match(r"^\s*([a-zA-Z\-]+)", med)
                if match:
                     current_med_names.append(match.group(1).lower())

            # Basic allergy extraction (first word or phrase before parenthesis, lowercased)
            allergies_list = []
            for a in allergies_str.split(','):
                cleaned_allergy = a.strip()
                if cleaned_allergy:
                     match = re.match(r"^\s*([a-zA-Z\-\s]+)(?:\s*\(.*\))?", cleaned_allergy)
                     if match:
                         allergies_list.append(match.group(1).strip().lower())
                     else: # Fallback if no parenthesis
                          allergies_list.append(cleaned_allergy.lower())

            st.session_state.patient_data = {
                "demographics": {"age": age, "sex": sex},
                "hpi": {"chief_complaint": chief_complaint, "details": hpi_details, "symptoms": symptoms},
                "pmh": {"conditions": pmh}, "psh": {"procedures": psh},
                "medications": {"current": current_meds_list, "names_only": current_med_names},
                "allergies": allergies_list,
                "social_history": {"details": social_history}, "family_history": {"details": family_history},
                "vitals": { "temp_c": temp_c, "hr_bpm": hr_bpm, "bp_mmhg": bp_mmhg, "rr_rpm": rr_rpm, "spo2_percent": spo2_percent, "pain_scale": pain_scale},
                "exam_findings": {"notes": exam_notes}
            }

            # Initial Red Flag Check (Client-side)
            red_flags = check_red_flags(st.session_state.patient_data)
            st.sidebar.markdown("---")
            if red_flags:
                st.sidebar.warning("**Initial Red Flags Detected:**")
                for flag in red_flags: st.sidebar.warning(f"- {flag.replace('Red Flag: ','')}")
            else:
                 st.sidebar.success("No immediate red flags detected in initial data.")

            # Prepare initial message for the graph
            initial_prompt = f"Initiate consultation for the patient described in the intake form. Start the analysis."
            # Clear previous messages and start fresh
            st.session_state.messages = [HumanMessage(content=initial_prompt)]
            st.success("Patient data loaded. Ready for analysis.")
            # No rerun needed here, chat input will trigger the graph

    # --- Main Chat Interface Area ---
    st.header("πŸ’¬ Clinical Consultation")

    # Display chat messages from history
    for msg_index, msg in enumerate(st.session_state.messages):
        unique_key = f"msg_{msg_index}" # Basic unique key
        if isinstance(msg, HumanMessage):
            with st.chat_message("user", key=f"{unique_key}_user"):
                st.markdown(msg.content)
        elif isinstance(msg, AIMessage):
            with st.chat_message("assistant", key=f"{unique_key}_ai"):
                # Display AI text content
                ai_content = msg.content
                structured_output = None

                # Attempt to parse structured JSON if present
                try:
                    # Look for ```json ... ``` block
                    json_match = re.search(r"```json\s*(\{.*?\})\s*```", ai_content, re.DOTALL | re.IGNORECASE)
                    if json_match:
                        json_str = json_match.group(1)
                        # Display content before/after the JSON block if any
                        prefix = ai_content[:json_match.start()].strip()
                        suffix = ai_content[json_match.end():].strip()
                        if prefix: st.markdown(prefix)
                        structured_output = json.loads(json_str)
                        if suffix: st.markdown(suffix)
                    # Check if the entire message might be JSON
                    elif ai_content.strip().startswith("{") and ai_content.strip().endswith("}"):
                         structured_output = json.loads(ai_content)
                         ai_content = "" # Don't display raw JSON if parsed ok
                    else:
                         # No JSON found, display content as is
                         st.markdown(ai_content)

                except json.JSONDecodeError:
                    # Failed to parse, display raw content
                    st.markdown(ai_content)
                    st.warning("Note: Could not parse structured JSON in AI response.", icon="⚠️")
                except Exception as e:
                     st.markdown(ai_content) # Display raw on other errors
                     st.error(f"Error processing AI message display: {e}", icon="❌")

                # Display structured data nicely if parsed
                if structured_output and isinstance(structured_output, dict):
                    st.divider()
                    st.subheader("πŸ“Š AI Analysis & Recommendations")
                    cols = st.columns(2)
                    with cols[0]:
                        st.markdown(f"**Assessment:**")
                        st.markdown(f"> {structured_output.get('assessment', 'N/A')}")

                        st.markdown(f"**Differential Diagnosis:**")
                        ddx = structured_output.get('differential_diagnosis', [])
                        if ddx:
                            for item in ddx:
                                likelihood = item.get('likelihood', 'Unknown').capitalize()
                                icon = "πŸ₯‡" if likelihood=="High" else ("πŸ₯ˆ" if likelihood=="Medium" else "πŸ₯‰")
                                with st.expander(f"{icon} {item.get('diagnosis', 'Unknown')} ({likelihood})"):
                                    st.write(f"**Rationale:** {item.get('rationale', 'N/A')}")
                        else: st.info("No differential diagnosis provided.")

                        st.markdown(f"**Risk Assessment:**")
                        risk = structured_output.get('risk_assessment', {})
                        flags = risk.get('identified_red_flags', [])
                        if flags: st.warning(f"**Flags:** {', '.join(flags)}")
                        if risk.get("immediate_concerns"): st.warning(f"**Concerns:** {', '.join(risk.get('immediate_concerns'))}")
                        if risk.get("potential_complications"): st.info(f"**Potential Complications:** {', '.join(risk.get('potential_complications'))}")
                        if not flags and not risk.get("immediate_concerns"): st.success("No major risks highlighted in this assessment.")

                    with cols[1]:
                        st.markdown(f"**Recommended Plan:**")
                        plan = structured_output.get('recommended_plan', {})
                        sub_sections = ["investigations", "therapeutics", "consultations", "patient_education"]
                        for section in sub_sections:
                             st.markdown(f"_{section.replace('_',' ').capitalize()}:_")
                             items = plan.get(section)
                             if items and isinstance(items, list):
                                 for item in items: st.markdown(f"- {item}")
                             elif items: # Handle if it's just a string
                                  st.markdown(f"- {items}")
                             else: st.markdown("_None suggested._")
                             st.markdown("") # Add space

                    # Display Rationale and Interaction Summary below columns
                    st.markdown(f"**Rationale & Guideline Check:**")
                    st.markdown(f"> {structured_output.get('rationale_summary', 'N/A')}")
                    interaction_summary = structured_output.get("interaction_check_summary", "")
                    if interaction_summary:
                         st.markdown(f"**Interaction Check Summary:**")
                         st.markdown(f"> {interaction_summary}")

                    st.divider()

                # Display tool calls requested in this AI turn
                if getattr(msg, 'tool_calls', None):
                     with st.expander("πŸ› οΈ AI requested actions", expanded=False):
                         for tc in msg.tool_calls:
                             try:
                                 # Safely display, default args to empty dict if missing
                                 st.code(f"Action: {tc.get('name', 'Unknown Tool')}\nArgs: {json.dumps(tc.get('args', {}), indent=2)}", language="json")
                             except Exception as display_e:
                                  st.error(f"Could not display tool call: {display_e}")
                                  st.code(str(tc)) # Raw display as fallback

        elif isinstance(msg, ToolMessage):
            # Safely get tool name
            tool_name_display = getattr(msg, 'name', 'tool_execution') # Use 'name' attribute added in tool_node
            with st.chat_message(tool_name_display, avatar="πŸ› οΈ", key=f"{unique_key}_tool"):
                try:
                    # Attempt to parse content as JSON for structured display
                    tool_data = json.loads(msg.content)
                    status = tool_data.get("status", "info")
                    message = tool_data.get("message", msg.content)
                    details = tool_data.get("details")
                    warnings = tool_data.get("warnings")

                    if status == "success" or status == "clear" or status == "flagged":
                        st.success(f"{message}", icon="βœ…" if status != "flagged" else "🚨")
                    elif status == "warning":
                         st.warning(f"{message}", icon="⚠️")
                         if warnings and isinstance(warnings, list):
                             st.caption("Details:")
                             for warn in warnings: st.caption(f"- {warn}")
                    else: # Error or unknown status
                         st.error(f"{message}", icon="❌")

                    if details: st.caption(f"Details: {details}")

                except json.JSONDecodeError:
                    # If content is not JSON, display it plainly
                    st.info(f"{msg.content}")
                except Exception as e:
                     st.error(f"Error displaying tool message: {e}", icon="❌")
                     st.caption(f"Raw content: {msg.content}")

    # --- Chat Input Logic ---
    if prompt := st.chat_input("Your message or follow-up query..."):
        if not st.session_state.patient_data:
            st.warning("Please load patient data using the sidebar first.")
            st.stop() # Prevent execution if no patient data

        # Add user message to state and display it immediately
        user_message = HumanMessage(content=prompt)
        st.session_state.messages.append(user_message)
        with st.chat_message("user"):
            st.markdown(prompt)

        # Prepare state for graph invocation
        current_state = AgentState(
            messages=st.session_state.messages,
            patient_data=st.session_state.patient_data
        )

        # Invoke the graph
        with st.spinner("SynapseAI is thinking..."):
            try:
                # Use invoke to run the graph until it ends for this turn
                final_state = st.session_state.graph_app.invoke(
                     current_state,
                     {"recursion_limit": 15} # Add recursion limit for safety
                )
                # Update the session state messages with the final list from the graph run
                st.session_state.messages = final_state['messages']

            except Exception as e:
                print(f"CRITICAL ERROR during graph invocation: {type(e).__name__} - {e}")
                traceback.print_exc()
                st.error(f"An error occurred during the conversation turn: {e}", icon="❌")
                # Attempt to add an error message to the history for visibility
                error_ai_msg = AIMessage(content=f"Sorry, a critical error occurred: {type(e).__name__}. Please check logs or try again.")
                # Avoid modifying state directly during exception handling if possible,
                # but appending might be okay for display purposes.
                # st.session_state.messages.append(error_ai_msg) # Be cautious with state modification here

        # Rerun the script to display the updated chat history, including AI response and tool results
        st.rerun()

    # Disclaimer at the bottom
    st.markdown("---")
    st.warning(
        """**Disclaimer:** SynapseAI is an AI assistant for clinical decision support and does not replace professional medical judgment.
        All outputs must be critically reviewed and verified by a qualified healthcare provider before making any clinical decisions.
        Validate all information, especially diagnoses, dosages, and interactions, independently using standard medical resources."""
    )

if __name__ == "__main__":
    main()