File size: 34,117 Bytes
71db5de
788074d
b34efbf
 
 
 
 
 
 
 
 
788074d
 
4258926
896de2d
63b0a52
4258926
 
 
 
b34efbf
 
71db5de
b34efbf
 
 
 
 
 
 
71db5de
9988477
31ea2bf
71db5de
 
 
896de2d
 
71db5de
6b2d9f7
71db5de
 
b34efbf
71db5de
 
6b2d9f7
71db5de
 
6b2d9f7
71db5de
b34efbf
 
 
71db5de
 
 
9988477
 
 
71db5de
b34efbf
71db5de
9988477
 
71db5de
b34efbf
71db5de
9988477
 
 
 
 
b34efbf
71db5de
 
b34efbf
71db5de
b34efbf
 
71db5de
6b2d9f7
 
 
 
b34efbf
 
896de2d
6b2d9f7
71db5de
 
 
6b2d9f7
 
896de2d
6b2d9f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31ea2bf
6b2d9f7
71db5de
 
 
 
 
 
 
 
31ea2bf
896de2d
 
31ea2bf
71db5de
 
 
 
4258926
b34efbf
 
71db5de
b34efbf
 
71db5de
896de2d
31ea2bf
71db5de
 
 
 
 
 
 
 
9988477
4258926
71db5de
 
 
 
 
 
 
 
 
 
9988477
b34efbf
71db5de
 
 
 
 
 
 
 
 
 
b34efbf
896de2d
 
71db5de
9988477
4258926
 
71db5de
9988477
4258926
9988477
31ea2bf
4258926
71db5de
6b2d9f7
4258926
71db5de
 
 
 
 
 
4258926
 
71db5de
 
 
 
 
 
 
 
 
31ea2bf
71db5de
 
 
31ea2bf
71db5de
 
 
 
 
 
 
 
 
9988477
31ea2bf
9988477
4258926
71db5de
 
 
 
31ea2bf
9988477
 
 
 
4258926
31ea2bf
4258926
 
 
b34efbf
 
 
 
4258926
9988477
4258926
 
6b2d9f7
 
 
 
 
 
9988477
6b2d9f7
 
 
9988477
6b2d9f7
4258926
9988477
 
 
31ea2bf
71db5de
 
9988477
71db5de
9988477
 
71db5de
9988477
 
 
4258926
6b2d9f7
9988477
4258926
6b2d9f7
4258926
6b2d9f7
b34efbf
71db5de
31ea2bf
71db5de
 
 
 
b34efbf
 
71db5de
 
 
 
 
 
 
 
 
 
 
 
 
 
31ea2bf
71db5de
6b2d9f7
71db5de
 
 
 
6b2d9f7
 
71db5de
6b2d9f7
4258926
b34efbf
9988477
 
71db5de
b34efbf
9988477
 
6b2d9f7
4258926
6b2d9f7
b34efbf
4258926
9988477
4258926
9988477
 
71db5de
b34efbf
31ea2bf
 
b34efbf
71db5de
9988477
71db5de
31ea2bf
9988477
 
b564942
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
# -*- coding: utf-8 -*-
import streamlit as st
import requests
import json
import re
import os
import operator
import traceback
from functools import lru_cache
from dotenv import load_dotenv

from langchain_groq import ChatGroq
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_core.messages import HumanMessage, SystemMessage, AIMessage, ToolMessage
from langchain_core.pydantic_v1 import BaseModel, Field
from langchain_core.tools import tool
from langgraph.prebuilt import ToolExecutor
from langgraph.graph import StateGraph, END

from typing import Optional, List, Dict, Any, TypedDict, Annotated

# --- Environment Variable Loading & Validation ---
load_dotenv()
UMLS_API_KEY = os.environ.get("UMLS_API_KEY")
GROQ_API_KEY = os.environ.get("GROQ_API_KEY")
TAVILY_API_KEY = os.environ.get("TAVILY_API_KEY")
missing_keys = []
if not UMLS_API_KEY: missing_keys.append("UMLS_API_KEY")
if not GROQ_API_KEY: missing_keys.append("GROQ_API_KEY")
if not TAVILY_API_KEY: missing_keys.append("TAVILY_API_KEY")
if missing_keys: st.error(f"Missing API Key(s): {', '.join(missing_keys)}."); st.stop()

# --- Configuration & Constants ---
class ClinicalAppSettings: APP_TITLE = "SynapseAI (UMLS/FDA Integrated)"; PAGE_LAYOUT = "wide"; MODEL_NAME = "llama3-70b-8192"; TEMPERATURE = 0.1; MAX_SEARCH_RESULTS = 3
class ClinicalPrompts: SYSTEM_PROMPT = """
    You are SynapseAI, an expert AI clinical assistant engaged in an interactive consultation... [SYSTEM PROMPT REMAINS THE SAME - OMITTED FOR BREVITY]
    """

# --- API Helper Functions (get_rxcui, get_openfda_label, search_text_list) ---
# ... (Keep these functions exactly as they were) ...
UMLS_AUTH_ENDPOINT = "https://utslogin.nlm.nih.gov/cas/v1/api-key"; RXNORM_API_BASE = "https://rxnav.nlm.nih.gov/REST"; OPENFDA_API_BASE = "https://api.fda.gov/drug/label.json"
@lru_cache(maxsize=256)
def get_rxcui(drug_name: str) -> Optional[str]:
    if not drug_name or not isinstance(drug_name, str): return None; drug_name = drug_name.strip();
    if not drug_name: return None; print(f"RxNorm Lookup for: '{drug_name}'");
    try: # Try direct lookup first
        params = {"name": drug_name, "search": 1}; response = requests.get(f"{RXNORM_API_BASE}/rxcui.json", params=params, timeout=10); response.raise_for_status(); data = response.json();
        if data and "idGroup" in data and "rxnormId" in data["idGroup"]: rxcui = data["idGroup"]["rxnormId"][0]; print(f"  Found RxCUI: {rxcui} for '{drug_name}'"); return rxcui
        else: # Fallback to /drugs search
            params = {"name": drug_name}; response = requests.get(f"{RXNORM_API_BASE}/drugs.json", params=params, timeout=10); response.raise_for_status(); data = response.json();
            if data and "drugGroup" in data and "conceptGroup" in data["drugGroup"]:
                for group in data["drugGroup"]["conceptGroup"]:
                    if group.get("tty") in ["SBD", "SCD", "GPCK", "BPCK", "IN", "MIN", "PIN"]:
                        if "conceptProperties" in group and group["conceptProperties"]: rxcui = group["conceptProperties"][0].get("rxcui");
                        if rxcui: print(f"  Found RxCUI (via /drugs): {rxcui} for '{drug_name}'"); return rxcui
        print(f"  RxCUI not found for '{drug_name}'."); return None
    except requests.exceptions.RequestException as e: print(f"  Error fetching RxCUI for '{drug_name}': {e}"); return None
    except json.JSONDecodeError as e: print(f"  Error decoding RxNorm JSON response for '{drug_name}': {e}"); return None
    except Exception as e: print(f"  Unexpected error in get_rxcui for '{drug_name}': {e}"); return None
@lru_cache(maxsize=128)
def get_openfda_label(rxcui: Optional[str] = None, drug_name: Optional[str] = None) -> Optional[dict]:
    if not rxcui and not drug_name: return None; print(f"OpenFDA Label Lookup for: RXCUI={rxcui}, Name={drug_name}"); search_terms = []
    if rxcui: search_terms.append(f'spl_rxnorm_code:"{rxcui}" OR openfda.rxcui:"{rxcui}"')
    if drug_name: search_terms.append(f'(openfda.brand_name:"{drug_name.lower()}" OR openfda.generic_name:"{drug_name.lower()}")')
    search_query = " OR ".join(search_terms); params = {"search": search_query, "limit": 1};
    try:
        response = requests.get(OPENFDA_API_BASE, params=params, timeout=15); response.raise_for_status(); data = response.json();
        if data and "results" in data and data["results"]: print(f"  Found OpenFDA label for query: {search_query}"); return data["results"][0]
        print(f"  No OpenFDA label found for query: {search_query}"); return None
    except requests.exceptions.RequestException as e: print(f"  Error fetching OpenFDA label: {e}"); return None
    except json.JSONDecodeError as e: print(f"  Error decoding OpenFDA JSON response: {e}"); return None
    except Exception as e: print(f"  Unexpected error in get_openfda_label: {e}"); return None
def search_text_list(text_list: Optional[List[str]], search_terms: List[str]) -> List[str]:
    found_snippets = [];
    if not text_list or not search_terms: return found_snippets; search_terms_lower = [str(term).lower() for term in search_terms if term];
    for text_item in text_list:
        if not isinstance(text_item, str): continue; text_item_lower = text_item.lower();
        for term in search_terms_lower:
            if term in text_item_lower:
                start_index = text_item_lower.find(term); snippet_start = max(0, start_index - 50); snippet_end = min(len(text_item), start_index + len(term) + 100); snippet = text_item[snippet_start:snippet_end];
                # Highlight first match for clarity
                snippet = re.sub(f"({re.escape(term)})", r"**\1**", snippet, count=1, flags=re.IGNORECASE)
                found_snippets.append(f"...{snippet}...")
                break # Only report first match per text item
    return found_snippets


# --- Other Helper Functions ---
def parse_bp(bp_string: str) -> Optional[tuple[int, int]]:
    if not isinstance(bp_string, str): return None; match = re.match(r"(\d{1,3})\s*/\s*(\d{1,3})", bp_string.strip());
    if match: return int(match.group(1)), int(match.group(2)); return None

# CORRECTED check_red_flags function
def check_red_flags(patient_data: dict) -> List[str]:
    """Checks patient data against predefined red flags."""
    flags = []
    if not patient_data: return flags
    symptoms = patient_data.get("hpi", {}).get("symptoms", [])
    vitals = patient_data.get("vitals", {})
    history = patient_data.get("pmh", {}).get("conditions", "")
    symptoms_lower = [str(s).lower() for s in symptoms if isinstance(s, str)]

    # Symptom Flags (CORRECTED - Separate lines)
    if "chest pain" in symptoms_lower:
        flags.append("Red Flag: Chest Pain reported.")
    if "shortness of breath" in symptoms_lower:
        flags.append("Red Flag: Shortness of Breath reported.")
    if "severe headache" in symptoms_lower:
        flags.append("Red Flag: Severe Headache reported.")
    if "sudden vision loss" in symptoms_lower:
        flags.append("Red Flag: Sudden Vision Loss reported.")
    if "weakness on one side" in symptoms_lower:
        flags.append("Red Flag: Unilateral Weakness reported (potential stroke).")
    if "hemoptysis" in symptoms_lower:
        flags.append("Red Flag: Hemoptysis (coughing up blood).")
    if "syncope" in symptoms_lower:
        flags.append("Red Flag: Syncope (fainting).")

    # Vital Sign Flags
    if vitals:
        temp = vitals.get("temp_c"); hr = vitals.get("hr_bpm"); rr = vitals.get("rr_rpm")
        spo2 = vitals.get("spo2_percent"); bp_str = vitals.get("bp_mmhg")
        if temp is not None and temp >= 38.5: flags.append(f"Red Flag: Fever ({temp}Β°C).")
        if hr is not None and hr >= 120: flags.append(f"Red Flag: Tachycardia ({hr} bpm).")
        if hr is not None and hr <= 50: flags.append(f"Red Flag: Bradycardia ({hr} bpm).")
        if rr is not None and rr >= 24: flags.append(f"Red Flag: Tachypnea ({rr} rpm).")
        if spo2 is not None and spo2 <= 92: flags.append(f"Red Flag: Hypoxia ({spo2}%).")
        if bp_str:
            bp = parse_bp(bp_str)
            if bp:
                if bp[0] >= 180 or bp[1] >= 110: flags.append(f"Red Flag: Hypertensive Urgency/Emergency (BP: {bp_str} mmHg).")
                if bp[0] <= 90 or bp[1] <= 60: flags.append(f"Red Flag: Hypotension (BP: {bp_str} mmHg).")

    # History Flags
    if history and isinstance(history, str):
        history_lower = history.lower()
        if "history of mi" in history_lower and "chest pain" in symptoms_lower:
            flags.append("Red Flag: History of MI with current Chest Pain.")
        if "history of dvt/pe" in history_lower and "shortness of breath" in symptoms_lower:
             flags.append("Red Flag: History of DVT/PE with current Shortness of Breath.")

    return list(set(flags)) # Unique flags

def format_patient_data_for_prompt(data: dict) -> str:
    # ... (Keep this function exactly as it was) ...
    if not data: return "No patient data provided."; prompt_str = "";
    for key, value in data.items(): section_title = key.replace('_', ' ').title();
    if isinstance(value, dict) and value: has_content = any(sub_value for sub_value in value.values());
    if has_content: prompt_str += f"**{section_title}:**\n";
    for sub_key, sub_value in value.items():
        if sub_value: prompt_str += f"  - {sub_key.replace('_', ' ').title()}: {sub_value}\n"
    elif isinstance(value, list) and value: prompt_str += f"**{section_title}:** {', '.join(map(str, value))}\n"
    elif value and not isinstance(value, dict): prompt_str += f"**{section_title}:** {value}\n";
    return prompt_str.strip()


# --- Tool Definitions ---
class LabOrderInput(BaseModel): test_name: str = Field(...); reason: str = Field(...); priority: str = Field("Routine")
class PrescriptionInput(BaseModel): medication_name: str = Field(...); dosage: str = Field(...); route: str = Field(...); frequency: str = Field(...); duration: str = Field("As directed"); reason: str = Field(...)
class InteractionCheckInput(BaseModel): potential_prescription: str = Field(...); current_medications: Optional[List[str]] = Field(None); allergies: Optional[List[str]] = Field(None)
class FlagRiskInput(BaseModel): risk_description: str = Field(...); urgency: str = Field("High")

@tool("order_lab_test", args_schema=LabOrderInput)
def order_lab_test(test_name: str, reason: str, priority: str = "Routine") -> str:
    print(f"Executing order_lab_test: {test_name}, Reason: {reason}, Priority: {priority}"); return json.dumps({"status": "success", "message": f"Lab Ordered: {test_name} ({priority})", "details": f"Reason: {reason}"})
@tool("prescribe_medication", args_schema=PrescriptionInput)
def prescribe_medication(medication_name: str, dosage: str, route: str, frequency: str, duration: str, reason: str) -> str:
    print(f"Executing prescribe_medication: {medication_name} {dosage}..."); return json.dumps({"status": "success", "message": f"Prescription Prepared: {medication_name} {dosage} {route} {frequency}", "details": f"Duration: {duration}. Reason: {reason}"})
@tool("check_drug_interactions", args_schema=InteractionCheckInput)
def check_drug_interactions(potential_prescription: str, current_medications: Optional[List[str]] = None, allergies: Optional[List[str]] = None) -> str:
    # ... (Keep the FULL implementation of the NEW check_drug_interactions using API helpers) ...
    print(f"\n--- Executing REAL check_drug_interactions ---"); print(f"Checking potential prescription: '{potential_prescription}'"); warnings = []; potential_med_lower = potential_prescription.lower().strip();
    current_meds_list = current_medications or []; allergies_list = allergies or []; current_med_names_lower = [];
    for med in current_meds_list: match = re.match(r"^\s*([a-zA-Z\-]+)", str(med));
    if match: current_med_names_lower.append(match.group(1).lower());
    allergies_lower = [str(a).lower().strip() for a in allergies_list if a]; print(f"  Against Current Meds (names): {current_med_names_lower}"); print(f"  Against Allergies: {allergies_lower}");
    print(f"  Step 1: Normalizing '{potential_prescription}'..."); potential_rxcui = get_rxcui(potential_prescription); potential_label = get_openfda_label(rxcui=potential_rxcui, drug_name=potential_prescription);
    if not potential_rxcui and not potential_label: warnings.append(f"INFO: Could not reliably identify '{potential_prescription}'. Checks may be incomplete.");
    print("  Step 2: Performing Allergy Check...");
    for allergy in allergies_lower:
        if allergy == potential_med_lower: warnings.append(f"CRITICAL ALLERGY (Name Match): Patient allergic to '{allergy}'. Potential prescription is '{potential_prescription}'.");
        elif allergy in ["penicillin", "pcns"] and potential_med_lower in ["amoxicillin", "ampicillin", "augmentin", "piperacillin"]: warnings.append(f"POTENTIAL CROSS-ALLERGY: Patient allergic to Penicillin. High risk with '{potential_prescription}'.");
        elif allergy == "sulfa" and potential_med_lower in ["sulfamethoxazole", "bactrim", "sulfasalazine"]: warnings.append(f"POTENTIAL CROSS-ALLERGY: Patient allergic to Sulfa. High risk with '{potential_prescription}'.");
        elif allergy in ["nsaids", "aspirin"] and potential_med_lower in ["ibuprofen", "naproxen", "ketorolac", "diclofenac"]: warnings.append(f"POTENTIAL CROSS-ALLERGY: Patient allergic to NSAIDs/Aspirin. Risk with '{potential_prescription}'.");
    if potential_label: contraindications = potential_label.get("contraindications"); warnings_section = potential_label.get("warnings_and_cautions") or potential_label.get("warnings");
    if contraindications: allergy_mentions_ci = search_text_list(contraindications, allergies_lower);
    if allergy_mentions_ci: warnings.append(f"ALLERGY RISK (Contraindication Found): Label for '{potential_prescription}' mentions contraindication potentially related to patient allergies: {'; '.join(allergy_mentions_ci)}");
    if warnings_section: allergy_mentions_warn = search_text_list(warnings_section, allergies_lower);
    if allergy_mentions_warn: warnings.append(f"ALLERGY RISK (Warning Found): Label for '{potential_prescription}' mentions warnings potentially related to patient allergies: {'; '.join(allergy_mentions_warn)}");
    print("  Step 3: Performing Drug-Drug Interaction Check...");
    if potential_rxcui or potential_label:
        for current_med_name in current_med_names_lower:
            if not current_med_name or current_med_name == potential_med_lower: continue; print(f"    Checking interaction between '{potential_prescription}' and '{current_med_name}'..."); current_rxcui = get_rxcui(current_med_name); current_label = get_openfda_label(rxcui=current_rxcui, drug_name=current_med_name); search_terms_for_current = [current_med_name];
            if current_rxcui: search_terms_for_current.append(current_rxcui); search_terms_for_potential = [potential_med_lower];
            if potential_rxcui: search_terms_for_potential.append(potential_rxcui); interaction_found_flag = False;
            if potential_label and potential_label.get("drug_interactions"): interaction_mentions = search_text_list(potential_label.get("drug_interactions"), search_terms_for_current);
            if interaction_mentions: warnings.append(f"Potential Interaction ({potential_prescription.capitalize()} Label): Mentions '{current_med_name.capitalize()}'. Snippets: {'; '.join(interaction_mentions)}"); interaction_found_flag = True;
            if current_label and current_label.get("drug_interactions") and not interaction_found_flag: interaction_mentions = search_text_list(current_label.get("drug_interactions"), search_terms_for_potential);
            if interaction_mentions: warnings.append(f"Potential Interaction ({current_med_name.capitalize()} Label): Mentions '{potential_prescription.capitalize()}'. Snippets: {'; '.join(interaction_mentions)}");
    else: warnings.append(f"INFO: Drug-drug interaction check skipped for '{potential_prescription}' as it could not be identified via RxNorm/OpenFDA.");
    final_warnings = list(set(warnings)); status = "warning" if any("CRITICAL" in w or "Interaction" in w or "RISK" in w for w in final_warnings) else "clear";
    if not final_warnings: status = "clear"; message = f"Interaction/Allergy check for '{potential_prescription}': {len(final_warnings)} potential issue(s) identified using RxNorm/OpenFDA." if final_warnings else f"No major interactions or allergy issues identified for '{potential_prescription}' based on RxNorm/OpenFDA lookup."; print(f"--- Interaction Check Complete for '{potential_prescription}' ---");
    return json.dumps({"status": status, "message": message, "warnings": final_warnings})
@tool("flag_risk", args_schema=FlagRiskInput)
def flag_risk(risk_description: str, urgency: str) -> str:
    print(f"Executing flag_risk: {risk_description}, Urgency: {urgency}"); st.error(f"🚨 **{urgency.upper()} RISK FLAGGED by AI:** {risk_description}", icon="🚨"); return json.dumps({"status": "flagged", "message": f"Risk '{risk_description}' flagged with {urgency} urgency."})
search_tool = TavilySearchResults(max_results=ClinicalAppSettings.MAX_SEARCH_RESULTS, name="tavily_search_results")

# --- LangGraph Setup ---
class AgentState(TypedDict): messages: Annotated[list[Any], operator.add]; patient_data: Optional[dict]
tools = [order_lab_test, prescribe_medication, check_drug_interactions, flag_risk, search_tool]
tool_executor = ToolExecutor(tools)
model = ChatGroq(temperature=ClinicalAppSettings.TEMPERATURE, model=ClinicalAppSettings.MODEL_NAME)
model_with_tools = model.bind_tools(tools)

# --- Graph Nodes (agent_node, tool_node) ---
# ... (Keep these functions exactly as they were) ...
def agent_node(state: AgentState):
    print("\n---AGENT NODE---"); current_messages = state['messages'];
    if not current_messages or not isinstance(current_messages[0], SystemMessage): print("Prepending System Prompt."); current_messages = [SystemMessage(content=ClinicalPrompts.SYSTEM_PROMPT)] + current_messages;
    print(f"Invoking LLM with {len(current_messages)} messages.");
    try: response = model_with_tools.invoke(current_messages); print(f"Agent Raw Response Type: {type(response)}");
    if hasattr(response, 'tool_calls') and response.tool_calls: print(f"Agent Response Tool Calls: {response.tool_calls}"); else: print("Agent Response: No tool calls.");
    except Exception as e: print(f"ERROR in agent_node: {e}"); traceback.print_exc(); error_message = AIMessage(content=f"Error: {e}"); return {"messages": [error_message]};
    return {"messages": [response]}
def tool_node(state: AgentState):
    print("\n---TOOL NODE---"); tool_messages = []; last_message = state['messages'][-1];
    if not isinstance(last_message, AIMessage) or not getattr(last_message, 'tool_calls', None): print("Warning: Tool node called unexpectedly."); return {"messages": []};
    tool_calls = last_message.tool_calls; print(f"Tool calls received: {json.dumps(tool_calls, indent=2)}"); prescriptions_requested = {}; interaction_checks_requested = {};
    for call in tool_calls: tool_name = call.get('name'); tool_args = call.get('args', {});
    if tool_name == 'prescribe_medication': med_name = tool_args.get('medication_name', '').lower();
    if med_name: prescriptions_requested[med_name] = call;
    elif tool_name == 'check_drug_interactions': potential_med = tool_args.get('potential_prescription', '').lower();
    if potential_med: interaction_checks_requested[potential_med] = call;
    valid_tool_calls_for_execution = []; blocked_ids = set();
    for med_name, prescribe_call in prescriptions_requested.items():
        if med_name not in interaction_checks_requested: st.error(f"**Safety Violation:** AI tried to prescribe '{med_name}' without check."); error_msg = ToolMessage(content=json.dumps({"status": "error", "message": f"Interaction check needed for '{med_name}'."}), tool_call_id=prescribe_call['id'], name=prescribe_call['name']); tool_messages.append(error_msg); blocked_ids.add(prescribe_call['id']);
    valid_tool_calls_for_execution = [call for call in tool_calls if call['id'] not in blocked_ids];
    patient_data = state.get("patient_data", {}); patient_meds_full = patient_data.get("medications", {}).get("current", []); patient_allergies = patient_data.get("allergies", []);
    for call in valid_tool_calls_for_execution:
        if call['name'] == 'check_drug_interactions':
            if 'args' not in call: call['args'] = {}; call['args']['current_medications'] = patient_meds_full; call['args']['allergies'] = patient_allergies; print(f"Augmented interaction check args for call ID {call['id']}");
    if valid_tool_calls_for_execution: print(f"Attempting execution: {[c['name'] for c in valid_tool_calls_for_execution]}");
    try: responses = tool_executor.batch(valid_tool_calls_for_execution, return_exceptions=True);
    for call, resp in zip(valid_tool_calls_for_execution, responses): tool_call_id = call['id']; tool_name = call['name'];
    if isinstance(resp, Exception): error_type = type(resp).__name__; error_str = str(resp); print(f"ERROR executing tool '{tool_name}': {error_type} - {error_str}"); traceback.print_exc(); st.error(f"Error: {error_type}"); error_content = json.dumps({"status": "error", "message": f"Failed: {error_type} - {error_str}"}); tool_messages.append(ToolMessage(content=error_content, tool_call_id=tool_call_id, name=tool_name));
    if isinstance(resp, AttributeError) and "'dict' object has no attribute 'tool'" in error_str: print("\n *** DETECTED SPECIFIC ATTRIBUTE ERROR *** \n");
    else: print(f"Tool '{tool_name}' executed."); content_str = str(resp); tool_messages.append(ToolMessage(content=content_str, tool_call_id=tool_call_id, name=tool_name));
    except Exception as e: print(f"CRITICAL TOOL NODE ERROR: {e}"); traceback.print_exc(); st.error(f"Critical error: {e}"); error_content = json.dumps({"status": "error", "message": f"Internal error: {e}"}); processed_ids = {msg.tool_call_id for msg in tool_messages}; [tool_messages.append(ToolMessage(content=error_content, tool_call_id=call['id'], name=call['name'])) for call in valid_tool_calls_for_execution if call['id'] not in processed_ids];
    print(f"Returning {len(tool_messages)} tool messages."); return {"messages": tool_messages}

# --- Graph Edges (Routing Logic) ---
def should_continue(state: AgentState) -> str:
    print("\n---ROUTING DECISION---"); last_message = state['messages'][-1] if state['messages'] else None;
    if not isinstance(last_message, AIMessage): return "end_conversation_turn";
    if "Sorry, an internal error occurred" in last_message.content: return "end_conversation_turn";
    if getattr(last_message, 'tool_calls', None): return "continue_tools"; else: return "end_conversation_turn";

# --- Graph Definition & Compilation ---
workflow = StateGraph(AgentState); workflow.add_node("agent", agent_node); workflow.add_node("tools", tool_node)
workflow.set_entry_point("agent"); workflow.add_conditional_edges("agent", should_continue, {"continue_tools": "tools", "end_conversation_turn": END})
workflow.add_edge("tools", "agent"); app = workflow.compile(); print("LangGraph compiled successfully.")

# --- Streamlit UI ---
def main():
    st.set_page_config(page_title=ClinicalAppSettings.APP_TITLE, layout=ClinicalAppSettings.PAGE_LAYOUT)
    st.title(f"🩺 {ClinicalAppSettings.APP_TITLE}")
    st.caption(f"Interactive Assistant | LangGraph/Groq/Tavily/UMLS/OpenFDA | Model: {ClinicalAppSettings.MODEL_NAME}")
    if "messages" not in st.session_state: st.session_state.messages = []
    if "patient_data" not in st.session_state: st.session_state.patient_data = None
    if "graph_app" not in st.session_state: st.session_state.graph_app = app

    # --- Patient Data Input Sidebar ---
    with st.sidebar:
        st.header("πŸ“„ Patient Intake Form")
        # Input fields...
        st.subheader("Demographics"); age = st.number_input("Age", 0, 120, 55, key="sb_age"); sex = st.selectbox("Sex", ["Male", "Female", "Other"], key="sb_sex")
        st.subheader("HPI"); chief_complaint = st.text_input("Chief Complaint", "Chest pain", key="sb_cc"); hpi_details = st.text_area("HPI Details", "55 y/o male...", height=100, key="sb_hpi"); symptoms = st.multiselect("Symptoms", ["Nausea", "Diaphoresis", "SOB", "Dizziness", "Severe Headache", "Syncope", "Hemoptysis"], default=["Nausea", "Diaphoresis"], key="sb_sym")
        st.subheader("History"); pmh = st.text_area("PMH", "HTN, HLD, DM2, History of MI", key="sb_pmh"); psh = st.text_area("PSH", "Appendectomy", key="sb_psh")
        st.subheader("Meds & Allergies"); current_meds_str = st.text_area("Current Meds", "Lisinopril 10mg daily\nMetformin 1000mg BID\nAtorvastatin 40mg daily", key="sb_meds"); allergies_str = st.text_area("Allergies", "Penicillin (rash), Sulfa", key="sb_allergies")
        st.subheader("Social/Family"); social_history = st.text_area("SH", "Smoker", key="sb_sh"); family_history = st.text_area("FHx", "Father MI", key="sb_fhx")
        st.subheader("Vitals & Exam"); col1, col2 = st.columns(2);
        with col1: temp_c = st.number_input("Temp C", 35.0, 42.0, 36.8, format="%.1f", key="sb_temp"); hr_bpm = st.number_input("HR", 30, 250, 95, key="sb_hr"); rr_rpm = st.number_input("RR", 5, 50, 18, key="sb_rr")
        with col2: bp_mmhg = st.text_input("BP", "155/90", key="sb_bp"); spo2_percent = st.number_input("SpO2", 70, 100, 96, key="sb_spo2"); pain_scale = st.slider("Pain", 0, 10, 8, key="sb_pain")
        exam_notes = st.text_area("Exam Notes", "Awake, alert...", height=50, key="sb_exam")

        if st.button("Start/Update Consultation", key="sb_start"):
            current_meds_list = [med.strip() for med in current_meds_str.split('\n') if med.strip()]
            current_med_names_only = [];
            for med in current_meds_list: match = re.match(r"^\s*([a-zA-Z\-]+)", med);
            if match: current_med_names_only.append(match.group(1).lower())
            allergies_list = []
            for a in allergies_str.split(','): cleaned_allergy = a.strip();
            if cleaned_allergy: match = re.match(r"^\s*([a-zA-Z\-\s/]+)(?:\s*\(.*\))?", cleaned_allergy); name_part = match.group(1).strip().lower() if match else cleaned_allergy.lower(); allergies_list.append(name_part)
            st.session_state.patient_data = { "demographics": {"age": age, "sex": sex}, "hpi": {"chief_complaint": chief_complaint, "details": hpi_details, "symptoms": symptoms}, "pmh": {"conditions": pmh}, "psh": {"procedures": psh}, "medications": {"current": current_meds_list, "names_only": current_med_names_only}, "allergies": allergies_list, "social_history": {"details": social_history}, "family_history": {"details": family_history}, "vitals": { "temp_c": temp_c, "hr_bpm": hr_bpm, "bp_mmhg": bp_mmhg, "rr_rpm": rr_rpm, "spo2_percent": spo2_percent, "pain_scale": pain_scale}, "exam_findings": {"notes": exam_notes} }
            red_flags = check_red_flags(st.session_state.patient_data); st.sidebar.markdown("---");
            if red_flags: st.sidebar.warning("**Initial Red Flags:**"); [st.sidebar.warning(f"- {flag.replace('Red Flag: ','')}") for flag in red_flags]
            else: st.sidebar.success("No immediate red flags.")
            initial_prompt = "Initiate consultation. Review patient data and begin analysis."
            st.session_state.messages = [HumanMessage(content=initial_prompt)]; st.success("Patient data loaded/updated.")

    # --- Main Chat Interface Area ---
    st.header("πŸ’¬ Clinical Consultation")
    # Display loop - key= argument REMOVED, Tool Call Display Syntax FIXED
    for msg in st.session_state.messages:
        if isinstance(msg, HumanMessage):
            with st.chat_message("user"): st.markdown(msg.content)
        elif isinstance(msg, AIMessage):
            with st.chat_message("assistant"):
                ai_content = msg.content; structured_output = None
                try: # JSON Parsing logic...
                    json_match = re.search(r"```json\s*(\{.*?\})\s*```", ai_content, re.DOTALL | re.IGNORECASE)
                    if json_match: json_str = json_match.group(1); prefix = ai_content[:json_match.start()].strip(); suffix = ai_content[json_match.end():].strip();
                    if prefix: st.markdown(prefix); structured_output = json.loads(json_str);
                    if suffix: st.markdown(suffix)
                    elif ai_content.strip().startswith("{") and ai_content.strip().endswith("}"): structured_output = json.loads(ai_content); ai_content = ""
                    else: st.markdown(ai_content)
                except Exception as e: st.markdown(ai_content); print(f"Error parsing/displaying AI JSON: {e}")
                if structured_output and isinstance(structured_output, dict): # Structured JSON display logic...
                    st.divider(); st.subheader("πŸ“Š AI Analysis & Recommendations")
                    cols = st.columns(2);
                    with cols[0]: st.markdown("**Assessment:**"); st.markdown(f"> {structured_output.get('assessment', 'N/A')}"); st.markdown("**Differential Diagnosis:**"); ddx = structured_output.get('differential_diagnosis', []);
                    if ddx: [st.expander(f"{'πŸ₯‡πŸ₯ˆπŸ₯‰'[('High','Medium','Low').index(item.get('likelihood','Low')[0])] if item.get('likelihood','?')[0] in 'HML' else '?'} {item.get('diagnosis', 'Unknown')} ({item.get('likelihood','?')})").write(f"**Rationale:** {item.get('rationale', 'N/A')}") for item in ddx]
                    else: st.info("No DDx provided."); st.markdown("**Risk Assessment:**"); risk = structured_output.get('risk_assessment', {}); flags=risk.get('identified_red_flags',[]); concerns=risk.get("immediate_concerns",[]); comps=risk.get("potential_complications",[])
                    if flags: st.warning(f"**Flags:** {', '.join(flags)}"); if concerns: st.warning(f"**Concerns:** {', '.join(concerns)}"); if comps: st.info(f"**Potential Complications:** {', '.join(comps)}");
                    if not flags and not concerns: st.success("No major risks highlighted.")
                    with cols[1]: st.markdown("**Recommended Plan:**"); plan = structured_output.get('recommended_plan', {});
                    for section in ["investigations","therapeutics","consultations","patient_education"]: st.markdown(f"_{section.replace('_',' ').capitalize()}:_"); items = plan.get(section); [st.markdown(f"- {item}") for item in items] if items and isinstance(items, list) else (st.markdown(f"- {items}") if items else st.markdown("_None_")); st.markdown("")
                    st.markdown("**Rationale & Guideline Check:**"); st.markdown(f"> {structured_output.get('rationale_summary', 'N/A')}"); interaction_summary = structured_output.get("interaction_check_summary", "");
                    if interaction_summary: st.markdown("**Interaction Check Summary:**"); st.markdown(f"> {interaction_summary}"); st.divider()

                # CORRECTED Tool Call Display Block
                if getattr(msg, 'tool_calls', None):
                     with st.expander("πŸ› οΈ AI requested actions", expanded=False):
                         if msg.tool_calls:
                            for tc in msg.tool_calls:
                                try:
                                    st.code(f"Action: {tc.get('name', 'Unknown Tool')}\nArgs: {json.dumps(tc.get('args', {}), indent=2)}", language="json")
                                except Exception as display_e:
                                    st.error(f"Could not display tool call args: {display_e}", icon="⚠️")
                                    st.code(f"Action: {tc.get('name', 'Unknown Tool')}\nRaw Args: {tc.get('args')}")
                         else:
                            st.caption("_No actions requested._")
        elif isinstance(msg, ToolMessage):
            tool_name_display = getattr(msg, 'name', 'tool_execution')
            with st.chat_message(tool_name_display, avatar="πŸ› οΈ"): # No key
                try: # Tool message display logic...
                    tool_data = json.loads(msg.content); status = tool_data.get("status", "info"); message = tool_data.get("message", msg.content); details = tool_data.get("details"); warnings = tool_data.get("warnings");
                    if status == "success" or status == "clear" or status == "flagged": st.success(f"{message}", icon="βœ…" if status != "flagged" else "🚨")
                    elif status == "warning": st.warning(f"{message}", icon="⚠️");
                    if warnings and isinstance(warnings, list): st.caption("Details:"); [st.caption(f"- {warn}") for warn in warnings]
                    else: st.error(f"{message}", icon="❌") # Assume error if not success/clear/flagged/warning
                    if details: st.caption(f"Details: {details}")
                except json.JSONDecodeError: st.info(f"{msg.content}") # Display raw if not JSON
                except Exception as e: st.error(f"Error displaying tool message: {e}", icon="❌"); st.caption(f"Raw content: {msg.content}")

    # --- Chat Input Logic ---
    if prompt := st.chat_input("Your message or follow-up query..."):
        if not st.session_state.patient_data: st.warning("Please load patient data first."); st.stop()
        user_message = HumanMessage(content=prompt); st.session_state.messages.append(user_message)
        with st.chat_message("user"): st.markdown(prompt)
        current_state = AgentState(messages=st.session_state.messages, patient_data=st.session_state.patient_data)
        with st.spinner("SynapseAI is thinking..."):
            try:
                final_state = st.session_state.graph_app.invoke(current_state, {"recursion_limit": 15})
                st.session_state.messages = final_state['messages']
            except Exception as e: print(f"CRITICAL ERROR: {e}"); traceback.print_exc(); st.error(f"Error: {e}")
        st.rerun()

    # Disclaimer
    st.markdown("---"); st.warning("**Disclaimer:** SynapseAI is for demonstration...")

if __name__ == "__main__":
    main()