File size: 31,914 Bytes
788074d 896de2d 63b0a52 896de2d 9c32b8a 896de2d fc636ce 896de2d fc636ce 896de2d fc636ce 896de2d 9c32b8a 896de2d 9c32b8a 896de2d 9c32b8a 896de2d 9c32b8a 896de2d 788074d 896de2d b564942 896de2d b564942 896de2d b564942 896de2d b564942 896de2d b564942 896de2d b564942 896de2d b564942 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 |
import streamlit as st
from langchain_groq import ChatGroq
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_core.messages import HumanMessage, SystemMessage, AIMessage
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.output_parsers import StrOutputParser
from langchain_core.pydantic_v1 import BaseModel, Field
from langchain_core.tools import tool
from typing import Optional, List, Dict, Any
import json
import re # For parsing vitals like BP
# --- Configuration & Constants ---
class ClinicalAppSettings:
APP_TITLE = "SynapseAI: Advanced Clinical Decision Support"
PAGE_LAYOUT = "wide"
MODEL_NAME = "llama3-70b-8192" # Use a powerful model like Groq's Llama3 70b
TEMPERATURE = 0.1
MAX_SEARCH_RESULTS = 3
class ClinicalPrompts:
SYSTEM_PROMPT = """
You are SynapseAI, an expert AI clinical assistant designed to support healthcare professionals.
Your primary function is to analyze patient data, provide differential diagnoses, suggest evidence-based management plans, and identify potential risks according to the latest medical guidelines and safety protocols.
**Core Directives:**
1. **Comprehensive Analysis:** Thoroughly analyze ALL provided patient data (demographics, HPI, PMH, PSH, Allergies, Meds, SH, FH, ROS, Vitals, Exam).
2. **Structured Output:** ALWAYS format your response using the following JSON structure:
```json
{
"assessment": "Concise summary of the patient's presentation and key findings.",
"differential_diagnosis": [
{"diagnosis": "Primary Diagnosis", "likelihood": "High/Medium/Low", "rationale": "Supporting evidence..."},
{"diagnosis": "Alternative Diagnosis 1", "likelihood": "Medium/Low", "rationale": "Supporting/Refuting evidence..."},
{"diagnosis": "Alternative Diagnosis 2", "likelihood": "Low", "rationale": "Why it's less likely but considered..."}
],
"risk_assessment": {
"identified_red_flags": ["List any triggered red flags based on input"],
"immediate_concerns": ["Specific urgent issues requiring attention (e.g., sepsis risk, ACS rule-out)"],
"potential_complications": ["Possible future issues based on presentation"]
},
"recommended_plan": {
"investigations": ["List specific lab tests or imaging required. Use 'order_lab_test' tool."],
"therapeutics": ["Suggest specific treatments or prescriptions. Use 'prescribe_medication' tool."],
"consultations": ["Recommend specialist consultations if needed."],
"patient_education": ["Key points for patient communication."]
},
"rationale_summary": "Brief justification for the overall assessment and plan, referencing guidelines or evidence where possible. Use 'tavily_search_results' tool if needed to find supporting evidence/guidelines.",
"interaction_check_summary": "Summary of findings from the 'check_drug_interactions' tool IF a new medication was considered or prescribed."
}
```
3. **Safety First - Red Flags:** Immediately identify and report any conditions matching the defined RED_FLAGS. Use the `flag_risk` tool if critical.
4. **Safety First - Drug Interactions:** BEFORE suggesting *any* new prescription, you MUST use the `check_drug_interactions` tool to verify against the patient's current medications and allergies. Mention the result in `interaction_check_summary`.
5. **Tool Utilization:** Employ the provided tools (`order_lab_test`, `prescribe_medication`, `check_drug_interactions`, `flag_risk`, `tavily_search_results`) precisely when indicated by your plan. Adhere strictly to tool schemas. Do NOT hallucinate tool usage results; wait for actual tool output if required in a multi-turn scenario (though this implementation focuses on single-turn analysis with tool calls).
6. **Evidence-Based:** Briefly cite reasoning, drawing on general medical knowledge. Use Tavily Search for specific guideline checks or novel information when necessary.
7. **Clarity and Conciseness:** Be clear, avoiding ambiguity. Use standard medical terminology.
"""
# --- Mock Data / Helpers ---
# (In a real system, this would be a proper API/database)
MOCK_INTERACTION_DB = {
("Lisinopril", "Spironolactone"): "High risk of hyperkalemia. Monitor potassium closely.",
("Warfarin", "Amiodarone"): "Increased bleeding risk. Monitor INR frequently and adjust Warfarin dose.",
("Simvastatin", "Clarithromycin"): "Increased risk of myopathy/rhabdomyolysis. Avoid combination or use lower statin dose.",
("Aspirin", "Ibuprofen"): "Concurrent use may decrease Aspirin's cardioprotective effect. Potential for increased GI bleeding."
}
ALLERGY_INTERACTIONS = {
"Penicillin": ["Amoxicillin", "Ampicillin", "Piperacillin"],
"Sulfa": ["Sulfamethoxazole", "Sulfasalazine"],
"Aspirin": ["Ibuprofen", "Naproxen"] # Cross-reactivity example for NSAIDs
}
def parse_bp(bp_string: str) -> Optional[tuple[int, int]]:
"""Parses BP string like '120/80' into (systolic, diastolic) integers."""
match = re.match(r"(\d{1,3})\s*/\s*(\d{1,3})", bp_string)
if match:
return int(match.group(1)), int(match.group(2))
return None
def check_red_flags(patient_data: dict) -> List[str]:
"""Checks patient data against predefined red flags."""
flags = []
symptoms = patient_data.get("hpi", {}).get("symptoms", [])
vitals = patient_data.get("vitals", {})
history = patient_data.get("pmh", {}).get("conditions", "")
# Symptom Flags
if "chest pain" in [s.lower() for s in symptoms]: flags.append("Red Flag: Chest Pain reported.")
if "shortness of breath" in [s.lower() for s in symptoms]: flags.append("Red Flag: Shortness of Breath reported.")
if "severe headache" in [s.lower() for s in symptoms]: flags.append("Red Flag: Severe Headache reported.")
if "sudden vision loss" in [s.lower() for s in symptoms]: flags.append("Red Flag: Sudden Vision Loss reported.")
if "weakness on one side" in [s.lower() for s in symptoms]: flags.append("Red Flag: Unilateral Weakness reported (potential stroke).")
# Vital Sign Flags (add more checks as needed)
if "temp_c" in vitals and vitals["temp_c"] >= 38.5: flags.append(f"Red Flag: Fever (Temperature: {vitals['temp_c']}Β°C).")
if "hr_bpm" in vitals and vitals["hr_bpm"] >= 120: flags.append(f"Red Flag: Tachycardia (Heart Rate: {vitals['hr_bpm']} bpm).")
if "rr_rpm" in vitals and vitals["rr_rpm"] >= 24: flags.append(f"Red Flag: Tachypnea (Respiratory Rate: {vitals['rr_rpm']} rpm).")
if "spo2_percent" in vitals and vitals["spo2_percent"] <= 92: flags.append(f"Red Flag: Hypoxia (SpO2: {vitals['spo2_percent']}%).")
if "bp_mmhg" in vitals:
bp = parse_bp(vitals["bp_mmhg"])
if bp:
if bp[0] >= 180 or bp[1] >= 110: flags.append(f"Red Flag: Hypertensive Urgency/Emergency (BP: {vitals['bp_mmhg']} mmHg).")
if bp[0] <= 90 and bp[1] <= 60: flags.append(f"Red Flag: Hypotension (BP: {vitals['bp_mmhg']} mmHg).")
# History Flags (Simple examples)
if "history of mi" in history.lower() and "chest pain" in [s.lower() for s in symptoms]: flags.append("Red Flag: History of MI with current Chest Pain.")
return flags
# --- Enhanced Tool Definitions ---
# Use Pydantic models for robust argument validation
class LabOrderInput(BaseModel):
test_name: str = Field(..., description="Specific name of the lab test or panel (e.g., 'CBC', 'BMP', 'Troponin I', 'Urinalysis').")
reason: str = Field(..., description="Clinical justification for ordering the test (e.g., 'Rule out infection', 'Assess renal function', 'Evaluate for ACS').")
priority: str = Field("Routine", description="Priority of the test (e.g., 'STAT', 'Routine').")
@tool("order_lab_test", args_schema=LabOrderInput)
def order_lab_test(test_name: str, reason: str, priority: str = "Routine") -> str:
"""Orders a specific lab test with clinical justification and priority."""
return json.dumps({
"status": "success",
"message": f"Lab Ordered: {test_name} ({priority})",
"details": f"Reason: {reason}"
})
class PrescriptionInput(BaseModel):
medication_name: str = Field(..., description="Name of the medication.")
dosage: str = Field(..., description="Dosage amount and unit (e.g., '500 mg', '10 mg').")
route: str = Field(..., description="Route of administration (e.g., 'PO', 'IV', 'IM', 'Topical').")
frequency: str = Field(..., description="How often the medication should be taken (e.g., 'BID', 'QDaily', 'Q4-6H PRN').")
duration: str = Field("As directed", description="Duration of treatment (e.g., '7 days', '1 month', 'Until follow-up').")
reason: str = Field(..., description="Clinical indication for the prescription.")
@tool("prescribe_medication", args_schema=PrescriptionInput)
def prescribe_medication(medication_name: str, dosage: str, route: str, frequency: str, duration: str, reason: str) -> str:
"""Prescribes a medication with detailed instructions and clinical indication."""
# In a real scenario, this would trigger an e-prescription workflow
return json.dumps({
"status": "success",
"message": f"Prescription Prepared: {medication_name} {dosage} {route} {frequency}",
"details": f"Duration: {duration}. Reason: {reason}"
})
class InteractionCheckInput(BaseModel):
potential_prescription: str = Field(..., description="The name of the NEW medication being considered.")
current_medications: List[str] = Field(..., description="List of the patient's CURRENT medication names.")
allergies: List[str] = Field(..., description="List of the patient's known allergies.")
@tool("check_drug_interactions", args_schema=InteractionCheckInput)
def check_drug_interactions(potential_prescription: str, current_medications: List[str], allergies: List[str]) -> str:
"""Checks for potential drug-drug and drug-allergy interactions BEFORE prescribing."""
warnings = []
potential_med_lower = potential_prescription.lower()
# Check Allergies
for allergy in allergies:
allergy_lower = allergy.lower()
# Simple direct check
if allergy_lower == potential_med_lower:
warnings.append(f"CRITICAL ALLERGY: Patient allergic to {allergy}. Cannot prescribe {potential_prescription}.")
continue
# Check cross-reactivity (using simplified mock data)
if allergy_lower in ALLERGY_INTERACTIONS:
for cross_reactant in ALLERGY_INTERACTIONS[allergy_lower]:
if cross_reactant.lower() == potential_med_lower:
warnings.append(f"POTENTIAL CROSS-ALLERGY: Patient allergic to {allergy}. High risk with {potential_prescription}.")
# Check Drug-Drug Interactions (using simplified mock data)
current_meds_lower = [med.lower() for med in current_medications]
for current_med in current_meds_lower:
# Check pairs in both orders
pair1 = (current_med, potential_med_lower)
pair2 = (potential_med_lower, current_med)
if pair1 in MOCK_INTERACTION_DB:
warnings.append(f"Interaction Found: {potential_prescription} with {current_med.capitalize()} - {MOCK_INTERACTION_DB[pair1]}")
elif pair2 in MOCK_INTERACTION_DB:
warnings.append(f"Interaction Found: {potential_prescription} with {current_med.capitalize()} - {MOCK_INTERACTION_DB[pair2]}")
if not warnings:
return json.dumps({"status": "clear", "message": f"No major interactions identified for {potential_prescription} with current meds/allergies.", "warnings": []})
else:
return json.dumps({"status": "warning", "message": f"Potential interactions identified for {potential_prescription}.", "warnings": warnings})
class FlagRiskInput(BaseModel):
risk_description: str = Field(..., description="Specific critical risk identified (e.g., 'Suspected Sepsis', 'Acute Coronary Syndrome', 'Stroke Alert').")
urgency: str = Field("High", description="Urgency level (e.g., 'Critical', 'High', 'Moderate').")
@tool("flag_risk", args_schema=FlagRiskInput)
def flag_risk(risk_description: str, urgency: str) -> str:
"""Flags a critical risk identified during analysis for immediate attention."""
st.error(f"π¨ **{urgency.upper()} RISK FLAGGED:** {risk_description}", icon="π¨")
return json.dumps({
"status": "flagged",
"message": f"Risk '{risk_description}' flagged with {urgency} urgency."
})
# Initialize Search Tool
search_tool = TavilySearchResults(max_results=ClinicalAppSettings.MAX_SEARCH_RESULTS)
# --- Core Agent Logic ---
class ClinicalAgent:
def __init__(self):
self.model = ChatGroq(
temperature=ClinicalAppSettings.TEMPERATURE,
model=ClinicalAppSettings.MODEL_NAME
)
# Combine all tools
self.tools = [
order_lab_test,
prescribe_medication,
check_drug_interactions,
flag_risk,
search_tool
]
# Bind tools to the model
self.model_with_tools = self.model.bind_tools(self.tools)
# History for context (simple implementation)
self.history = []
def _format_patient_data_for_prompt(self, data: dict) -> str:
"""Formats the patient dictionary into a readable string for the LLM."""
prompt_str = "Patient Data:\n"
for key, value in data.items():
if isinstance(value, dict):
prompt_str += f" {key.replace('_', ' ').title()}:\n"
for sub_key, sub_value in value.items():
if sub_value: # Only include if there's data
prompt_str += f" - {sub_key.replace('_', ' ').title()}: {sub_value}\n"
elif isinstance(value, list) and value:
prompt_str += f" {key.replace('_', ' ').title()}: {', '.join(map(str, value))}\n"
elif value: # Only include non-empty fields
prompt_str += f" {key.replace('_', ' ').title()}: {value}\n"
return prompt_str.strip()
def analyze(self, patient_data: dict) -> tuple[Optional[dict], List[dict]]:
"""Runs the analysis, handling tool calls and parsing the structured output."""
try:
# Add System Prompt and formatted Patient Data
# Simple history management: add previous messages if any
messages = [SystemMessage(content=ClinicalPrompts.SYSTEM_PROMPT)]
# Include history if needed - consider token limits
# messages.extend(self.history)
formatted_data = self._format_patient_data_for_prompt(patient_data)
messages.append(HumanMessage(content=formatted_data))
# Invoke the model
ai_response = self.model_with_tools.invoke(messages)
# Store conversation turn
# self.history.append(HumanMessage(content=formatted_data))
# self.history.append(ai_response) # AIMessage includes tool calls
response_content = None
tool_calls = []
if isinstance(ai_response, AIMessage):
# Check if the response contains the structured JSON output
try:
# Sometimes the JSON is embedded in the content, sometimes it's the primary content
# Look for ```json ... ``` block first
json_match = re.search(r"```json\n(\{.*?\})\n```", ai_response.content, re.DOTALL)
if json_match:
response_content = json.loads(json_match.group(1))
else:
# Try parsing the whole content as JSON
response_content = json.loads(ai_response.content)
except json.JSONDecodeError:
st.warning("AI did not return valid JSON in the expected format. Displaying raw content.")
st.code(ai_response.content, language=None) # Display raw if not JSON
response_content = {"assessment": ai_response.content, "error": "Output format incorrect"}
# Extract tool calls separately
if ai_response.tool_calls:
tool_calls = ai_response.tool_calls
return response_content, tool_calls
except Exception as e:
st.error(f"Error during AI analysis: {str(e)}")
return None, []
def process_tool_call(self, tool_call: Dict[str, Any]) -> Any:
"""Executes a single tool call."""
tool_name = tool_call.get("name")
tool_args = tool_call.get("args", {})
selected_tool = {t.name: t for t in self.tools}.get(tool_name)
if not selected_tool:
return json.dumps({"status": "error", "message": f"Unknown tool: {tool_name}"})
try:
# Ensure args are correctly passed (Pydantic models handle validation)
return selected_tool.invoke(tool_args)
except Exception as e:
st.error(f"Error executing tool '{tool_name}': {str(e)}")
return json.dumps({"status": "error", "message": f"Failed to execute {tool_name}: {str(e)}"})
# --- Streamlit UI ---
def main():
st.set_page_config(page_title=ClinicalAppSettings.APP_TITLE, layout=ClinicalAppSettings.PAGE_LAYOUT)
st.title(f"π©Ί {ClinicalAppSettings.APP_TITLE}")
st.caption(f"Powered by Langchain & Groq ({ClinicalAppSettings.MODEL_NAME})")
# Initialize Agent in session state
if 'agent' not in st.session_state:
st.session_state.agent = ClinicalAgent()
if 'analysis_complete' not in st.session_state:
st.session_state.analysis_complete = False
if 'analysis_result' not in st.session_state:
st.session_state.analysis_result = None
if 'tool_call_results' not in st.session_state:
st.session_state.tool_call_results = []
if 'red_flags' not in st.session_state:
st.session_state.red_flags = []
# --- Patient Data Input Sidebar ---
with st.sidebar:
st.header("π Patient Intake Form")
# Demographics
st.subheader("Demographics")
age = st.number_input("Age", min_value=0, max_value=120, value=55)
sex = st.selectbox("Biological Sex", ["Male", "Female", "Other/Prefer not to say"])
# History of Present Illness (HPI)
st.subheader("History of Present Illness (HPI)")
chief_complaint = st.text_input("Chief Complaint", "Chest pain")
hpi_details = st.text_area("Detailed HPI", "55 y/o male presents with substernal chest pain started 2 hours ago, described as pressure, radiating to left arm. Associated with nausea and diaphoresis. Pain is 8/10 severity. No relief with rest.")
symptoms = st.multiselect("Associated Symptoms", ["Nausea", "Diaphoresis", "Shortness of Breath", "Dizziness", "Palpitations", "Fever", "Cough"], default=["Nausea", "Diaphoresis"])
# Past Medical/Surgical History (PMH/PSH)
st.subheader("Past History")
pmh = st.text_area("Past Medical History (PMH)", "Hypertension (HTN), Hyperlipidemia (HLD), Type 2 Diabetes Mellitus (DM2)")
psh = st.text_area("Past Surgical History (PSH)", "Appendectomy (2005)")
# Medications & Allergies
st.subheader("Medications & Allergies")
current_meds = st.text_area("Current Medications (name, dose, freq)", "Lisinopril 10mg daily\nMetformin 1000mg BID\nAtorvastatin 40mg daily\nAspirin 81mg daily")
allergies = st.text_area("Allergies (comma separated)", "Penicillin (rash)")
# Social & Family History (SH/FH)
st.subheader("Social/Family History")
social_history = st.text_area("Social History (SH)", "Smoker (1 ppd x 30 years), occasional alcohol.")
family_history = st.text_area("Family History (FHx)", "Father had MI at age 60. Mother has HTN.")
# Review of Systems (ROS) - Simplified
# st.subheader("Review of Systems (ROS)") # Keep UI cleaner for now
# ros_constitutional = st.checkbox("ROS: Constitutional (Fever, Chills, Weight loss)")
# ros_cardiac = st.checkbox("ROS: Cardiac (Chest pain, Palpitations)", value=True) # Pre-check based on HPI
# Vitals & Basic Exam
st.subheader("Vitals & Exam Findings")
col1, col2 = st.columns(2)
with col1:
temp_c = st.number_input("Temperature (Β°C)", 35.0, 42.0, 36.8, format="%.1f")
hr_bpm = st.number_input("Heart Rate (bpm)", 30, 250, 95)
rr_rpm = st.number_input("Respiratory Rate (rpm)", 5, 50, 18)
with col2:
bp_mmhg = st.text_input("Blood Pressure (SYS/DIA)", "155/90")
spo2_percent = st.number_input("SpO2 (%)", 70, 100, 96)
pain_scale = st.slider("Pain (0-10)", 0, 10, 8)
exam_notes = st.text_area("Brief Physical Exam Notes", "Awake, alert, oriented x3. Mild distress. Lungs clear. Cardiac exam: Regular rhythm, no murmurs/gallops. Abdomen soft. No edema.")
# Clean medication list and allergies for processing
current_meds_list = [med.strip() for med in current_meds.split('\n') if med.strip()]
current_med_names = [med.split(' ')[0].strip() for med in current_meds_list] # Simplified name extraction
allergies_list = [a.strip() for a in allergies.split(',') if a.strip()]
# Compile Patient Data Dictionary
patient_data = {
"demographics": {"age": age, "sex": sex},
"hpi": {"chief_complaint": chief_complaint, "details": hpi_details, "symptoms": symptoms},
"pmh": {"conditions": pmh},
"psh": {"procedures": psh},
"medications": {"current": current_meds_list, "names_only": current_med_names},
"allergies": allergies_list,
"social_history": {"details": social_history},
"family_history": {"details": family_history},
# "ros": {"constitutional": ros_constitutional, "cardiac": ros_cardiac}, # Add if using ROS inputs
"vitals": {
"temp_c": temp_c, "hr_bpm": hr_bpm, "bp_mmhg": bp_mmhg,
"rr_rpm": rr_rpm, "spo2_percent": spo2_percent, "pain_scale": pain_scale
},
"exam_findings": {"notes": exam_notes}
}
# --- Main Analysis Area ---
st.header("π€ AI Clinical Analysis")
# Action Button
if st.button("Analyze Patient Data", type="primary", use_container_width=True):
st.session_state.analysis_complete = False
st.session_state.analysis_result = None
st.session_state.tool_call_results = []
st.session_state.red_flags = []
# 1. Initial Red Flag Check (Client-side before LLM)
st.session_state.red_flags = check_red_flags(patient_data)
if st.session_state.red_flags:
st.warning("**Initial Red Flags Detected:**")
for flag in st.session_state.red_flags:
st.warning(f"- {flag}")
st.warning("Proceeding with AI analysis, but these require immediate attention.")
# 2. Call AI Agent
with st.spinner("SynapseAI is processing the case... Please wait."):
analysis_output, tool_calls = st.session_state.agent.analyze(patient_data)
if analysis_output:
st.session_state.analysis_result = analysis_output
st.session_state.analysis_complete = True
# 3. Process any Tool Calls requested by the AI
if tool_calls:
st.info(f"AI recommended {len(tool_calls)} action(s). Executing...")
tool_results = []
with st.spinner("Executing recommended actions..."):
for call in tool_calls:
st.write(f"βοΈ Requesting: `{call['name']}` with args `{call['args']}`")
# Pass patient context if needed (e.g., for interaction check)
if call['name'] == 'check_drug_interactions':
call['args']['current_medications'] = patient_data['medications']['names_only']
call['args']['allergies'] = patient_data['allergies']
elif call['name'] == 'prescribe_medication':
# Pre-flight check: Ensure interaction check was requested *before* this prescribe call
interaction_check_requested = any(tc['name'] == 'check_drug_interactions' and tc['args'].get('potential_prescription') == call['args'].get('medication_name') for tc in tool_calls)
if not interaction_check_requested:
st.error(f"**Safety Violation:** AI attempted to prescribe '{call['args'].get('medication_name')}' without requesting `check_drug_interactions` first. Prescription blocked.")
tool_results.append({"tool_call_id": call['id'], "name": call['name'], "output": json.dumps({"status":"error", "message": "Interaction check not performed prior to prescription attempt."})})
continue # Skip this tool call
result = st.session_state.agent.process_tool_call(call)
tool_results.append({"tool_call_id": call['id'], "name": call['name'], "output": result}) # Store result with ID
# Display tool result immediately
try:
result_data = json.loads(result)
if result_data.get("status") == "success" or result_data.get("status") == "clear" or result_data.get("status") == "flagged":
st.success(f"β
Action `{call['name']}`: {result_data.get('message')}", icon="β
")
if result_data.get("details"): st.caption(f"Details: {result_data.get('details')}")
elif result_data.get("status") == "warning":
st.warning(f"β οΈ Action `{call['name']}`: {result_data.get('message')}", icon="β οΈ")
if result_data.get("warnings"):
for warn in result_data["warnings"]: st.caption(f"- {warn}")
else:
st.error(f"β Action `{call['name']}`: {result_data.get('message')}", icon="β")
except json.JSONDecodeError:
st.error(f"Tool `{call['name']}` returned non-JSON: {result}") # Fallback for non-JSON results
st.session_state.tool_call_results = tool_results
# Optionally: Send results back to LLM for final summary (requires multi-turn agent)
else:
st.error("Analysis failed. Please check the input data or try again.")
# --- Display Analysis Results ---
if st.session_state.analysis_complete and st.session_state.analysis_result:
st.divider()
st.header("π Analysis & Recommendations")
res = st.session_state.analysis_result
# Layout columns for better readability
col_assessment, col_plan = st.columns(2)
with col_assessment:
st.subheader("π Assessment")
st.write(res.get("assessment", "N/A"))
st.subheader("π€ Differential Diagnosis")
ddx = res.get("differential_diagnosis", [])
if ddx:
for item in ddx:
likelihood = item.get('likelihood', 'Unknown').capitalize()
icon = "π₯" if likelihood=="High" else ("π₯" if likelihood=="Medium" else "π₯")
with st.expander(f"{icon} {item.get('diagnosis', 'Unknown Diagnosis')} ({likelihood} Likelihood)", expanded=(likelihood=="High")):
st.write(f"**Rationale:** {item.get('rationale', 'N/A')}")
else:
st.info("No differential diagnosis provided.")
st.subheader("π¨ Risk Assessment")
risk = res.get("risk_assessment", {})
flags = risk.get("identified_red_flags", []) + [f.replace("Red Flag: ", "") for f in st.session_state.red_flags] # Combine AI and initial flags
if flags:
st.warning(f"**Identified Red Flags:** {', '.join(flags)}")
else:
st.success("No immediate red flags identified by AI in this analysis.")
if risk.get("immediate_concerns"):
st.warning(f"**Immediate Concerns:** {', '.join(risk.get('immediate_concerns'))}")
if risk.get("potential_complications"):
st.info(f"**Potential Complications:** {', '.join(risk.get('potential_complications'))}")
with col_plan:
st.subheader("π Recommended Plan")
plan = res.get("recommended_plan", {})
st.markdown("**Investigations:**")
if plan.get("investigations"):
st.markdown("\n".join([f"- {inv}" for inv in plan.get("investigations")]))
else: st.markdown("_None suggested._")
st.markdown("**Therapeutics:**")
if plan.get("therapeutics"):
st.markdown("\n".join([f"- {thx}" for thx in plan.get("therapeutics")]))
else: st.markdown("_None suggested._")
st.markdown("**Consultations:**")
if plan.get("consultations"):
st.markdown("\n".join([f"- {con}" for con in plan.get("consultations")]))
else: st.markdown("_None suggested._")
st.markdown("**Patient Education:**")
if plan.get("patient_education"):
st.markdown("\n".join([f"- {edu}" for edu in plan.get("patient_education")]))
else: st.markdown("_None specified._")
# Display Rationale and Interaction Summary below the columns
st.subheader("π§ AI Rationale & Checks")
with st.expander("Show AI Reasoning Summary", expanded=False):
st.write(res.get("rationale_summary", "No rationale summary provided."))
interaction_summary = res.get("interaction_check_summary", "")
if interaction_summary: # Only show if interaction check was relevant/performed
with st.expander("Drug Interaction Check Summary", expanded=True):
st.write(interaction_summary)
# Also show detailed results from the tool call itself if available
for tool_res in st.session_state.tool_call_results:
if tool_res['name'] == 'check_drug_interactions':
try:
data = json.loads(tool_res['output'])
if data.get('warnings'):
st.warning("Interaction Details:")
for warn in data['warnings']:
st.caption(f"- {warn}")
else:
st.success("Interaction Details: " + data.get('message', 'Check complete.'))
except: pass # Ignore parsing errors here
# Display raw JSON if needed for debugging
with st.expander("Show Raw AI Output (JSON)"):
st.json(res)
st.divider()
st.success("Analysis Complete.")
# Disclaimer
st.markdown("---")
st.warning(
"""**Disclaimer:** SynapseAI is an AI assistant for clinical decision support and does not replace professional medical judgment.
All outputs should be critically reviewed by a qualified healthcare provider before making any clinical decisions.
Verify all information, especially dosages and interactions, independently."""
)
if __name__ == "__main__":
main() |