File size: 17,997 Bytes
23d48f5 8e9de1e 93f53ae 8e9de1e 93f53ae 8e9de1e 23d48f5 93f53ae 23d48f5 93f53ae 8e9de1e 23d48f5 93f53ae 8e9de1e 93f53ae 8e9de1e 93f53ae 8e9de1e 93f53ae 8e9de1e 93f53ae 8e9de1e 93f53ae 8e9de1e 93f53ae 8e9de1e 93f53ae 8e9de1e 93f53ae 8e9de1e 93f53ae 8e9de1e 93f53ae 8e9de1e 93f53ae 8e9de1e 93f53ae 8e9de1e 93f53ae 8e9de1e 93f53ae 8e9de1e 93f53ae 8e9de1e 93f53ae 8e9de1e 93f53ae 8e9de1e 93f53ae 8e9de1e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 |
import os
import re
import json
import requests
import traceback
import operator
from functools import lru_cache
from typing import Any, Dict, List, Optional, TypedDict, Annotated
from langchain_groq import ChatGroq
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_core.messages import HumanMessage, SystemMessage, AIMessage, ToolMessage
from langchain_core.pydantic_v1 import BaseModel, Field
from langchain_core.tools import tool
from langgraph.prebuilt import ToolExecutor
from langgraph.graph import StateGraph, END
# --- Configuration & Constants ---
UMLS_API_KEY = os.environ.get("UMLS_API_KEY")
GROQ_API_KEY = os.environ.get("GROQ_API_KEY")
TAVILY_API_KEY = os.environ.get("TAVILY_API_KEY")
AGENT_MODEL_NAME = "llama3-70b-8192"
AGENT_TEMPERATURE = 0.1
MAX_SEARCH_RESULTS = 3
UMLS_AUTH_ENDPOINT = "https://utslogin.nlm.nih.gov/cas/v1/api-key"
RXNORM_API_BASE = "https://rxnav.nlm.nih.gov/REST"
OPENFDA_API_BASE = "https://api.fda.gov/drug/label.json"
class ClinicalPrompts:
SYSTEM_PROMPT = (
"""
You are SynapseAI, an expert AI clinical assistant in an interactive consultation.
Analyze patient data, provide differential diagnoses, suggest management plans,
and identify risks according to current standards of care.
1. Process information sequentially; use full conversation history.
2. Ask for clarification if data is insufficient; do not guess.
3. When ready, output a complete JSON assessment as specified.
4. Before prescribing, run drug-interaction checks and report results.
5. Flag urgent red flags immediately.
6. Use tools logically; await results when needed.
7. Query clinical guidelines via tavily_search_results and cite them.
8. Be concise, accurate, and use standard terminology.
"""
)
# --- Helper Functions ---
@lru_cache(maxsize=256)
def get_rxcui(drug_name: str) -> Optional[str]:
"""Return RxNorm CUI for a given drug name."""
if not drug_name:
return None
name = drug_name.strip()
if not name:
return None
try:
# Primary lookup
params = {"name": name, "search": 1}
resp = requests.get(f"{RXNORM_API_BASE}/rxcui.json", params=params, timeout=10)
resp.raise_for_status()
data = resp.json()
ids = data.get("idGroup", {}).get("rxnormId", [])
if ids:
return ids[0]
# Fallback lookup
params = {"name": name}
resp = requests.get(f"{RXNORM_API_BASE}/drugs.json", params=params, timeout=10)
resp.raise_for_status()
data = resp.json()
groups = data.get("drugGroup", {}).get("conceptGroup", [])
for grp in groups:
if grp.get("tty") in ["SBD", "SCD", "GPCK", "BPCK", "IN", "MIN", "PIN"]:
props = grp.get("conceptProperties", [])
if props:
return props[0].get("rxcui")
except Exception:
traceback.print_exc()
return None
@lru_cache(maxsize=128)
def get_openfda_label(
rxcui: Optional[str] = None,
drug_name: Optional[str] = None
) -> Optional[dict]:
"""Fetch OpenFDA drug label by RxCUI or name."""
if not (rxcui or drug_name):
return None
terms = []
if rxcui:
terms.append(f'spl_rxnorm_code:"{rxcui}" OR openfda.rxcui:"{rxcui}"')
if drug_name:
name = drug_name.lower()
terms.append(f'(openfda.brand_name:"{name}" OR openfda.generic_name:"{name}")')
query = " OR ".join(terms)
params = {"search": query, "limit": 1}
try:
resp = requests.get(OPENFDA_API_BASE, params=params, timeout=15)
resp.raise_for_status()
data = resp.json()
results = data.get("results", [])
if results:
return results[0]
except Exception:
traceback.print_exc()
return None
def search_text_list(texts: List[str], terms: List[str]) -> List[str]:
"""Return snippets where any term appears in texts."""
snippets = []
lowers = [t.lower() for t in terms if t]
for txt in texts or []:
if not isinstance(txt, str):
continue
low_txt = txt.lower()
for term in lowers:
idx = low_txt.find(term)
if idx >= 0:
start = max(0, idx - 50)
end = min(len(txt), idx + len(term) + 100)
snippet = txt[start:end]
snippet = re.sub(
f"({re.escape(term)})",
r"**\1**",
snippet,
count=1,
flags=re.IGNORECASE,
)
snippets.append(f"...{snippet}...")
break
return snippets
def parse_bp(bp_str: str) -> Optional[tuple[int, int]]:
"""Parse blood pressure string 'systolic/diastolic'."""
match = re.match(r"(\d{1,3})\s*/\s*(\d{1,3})", bp_str or "")
if match:
return int(match.group(1)), int(match.group(2))
return None
def check_red_flags(patient_data: Dict) -> List[str]:
"""Identify critical red flags from patient data."""
flags = []
if not patient_data:
return flags
symptoms = [s.lower() for s in patient_data.get("hpi", {}).get("symptoms", [])]
vitals = patient_data.get("vitals", {})
history = patient_data.get("pmh", {}).get("conditions", "").lower()
# Symptom-based flags
mapping = {
"chest pain": "Chest Pain reported.",
"shortness of breath": "Shortness of Breath reported.",
"severe headache": "Severe Headache reported.",
"sudden vision loss": "Sudden Vision Loss reported.",
"weakness on one side": "Unilateral Weakness reported (potential stroke).",
"hemoptysis": "Hemoptysis (coughing up blood).",
"syncope": "Syncope (fainting).",
}
for term, desc in mapping.items():
if term in symptoms:
flags.append(f"Red Flag: {desc}")
# Vital sign flags
temp = vitals.get("temp_c")
hr = vitals.get("hr_bpm")
rr = vitals.get("rr_rpm")
spo2 = vitals.get("spo2_percent")
bp = parse_bp(vitals.get("bp_mmhg", ""))
if temp and temp >= 38.5:
flags.append(f"Red Flag: Fever ({temp}°C).")
if hr:
if hr >= 120:
flags.append(f"Red Flag: Tachycardia ({hr} bpm).")
if hr <= 50:
flags.append(f"Red Flag: Bradycardia ({hr} bpm).")
if rr and rr >= 24:
flags.append(f"Red Flag: Tachypnea ({rr} rpm).")
if spo2 and spo2 <= 92:
flags.append(f"Red Flag: Hypoxia ({spo2}%).")
if bp:
sys, dia = bp
if sys >= 180 or dia >= 110:
flags.append(f"Red Flag: Hypertensive Urgency/Emergency (BP: {sys}/{dia} mmHg).")
if sys <= 90 or dia <= 60:
flags.append(f"Red Flag: Hypotension (BP: {sys}/{dia} mmHg).")
# History-based flags
if "history of mi" in history and "chest pain" in symptoms:
flags.append("Red Flag: History of MI with current Chest Pain.")
if "history of dvt/pe" in history and "shortness of breath" in symptoms:
flags.append("Red Flag: History of DVT/PE with current Shortness of Breath.")
return list(set(flags))
def format_patient_data_for_prompt(data: Dict) -> str:
"""Convert patient data dict into a human-readable prompt section."""
if not data:
return "No patient data provided."
sections = []
for key, val in data.items():
title = key.replace("_", " ").title()
if isinstance(val, dict) and any(val.values()):
lines = [f"**{title}:**"]
for subk, subv in val.items():
if subv:
lines.append(f"- {subk.replace('_', ' ').title()}: {subv}")
sections.append("\n".join(lines))
elif isinstance(val, list) and val:
sections.append(f"**{title}:** {', '.join(map(str, val))}")
elif val:
sections.append(f"**{title}:** {val}")
return "\n\n".join(sections)
# --- Tool Schemas & Definitions ---
class LabOrderInput(BaseModel):
test_name: str = Field(...)
reason: str = Field(...)
priority: str = Field("Routine")
class PrescriptionInput(BaseModel):
medication_name: str = Field(...)
dosage: str = Field(...)
route: str = Field(...)
frequency: str = Field(...)
duration: str = Field("As directed")
reason: str = Field(...)
class InteractionCheckInput(BaseModel):
potential_prescription: str = Field(...)
current_medications: Optional[List[str]] = Field(None)
allergies: Optional[List[str]] = Field(None)
class FlagRiskInput(BaseModel):
risk_description: str = Field(...)
urgency: str = Field("High")
@tool("order_lab_test", args_schema=LabOrderInput)
def order_lab_test(test_name: str, reason: str, priority: str = "Routine") -> str:
result = {
"status": "success",
"message": f"Lab Ordered: {test_name} ({priority})",
"details": f"Reason: {reason}"
}
return json.dumps(result)
@tool("prescribe_medication", args_schema=PrescriptionInput)
def prescribe_medication(
medication_name: str,
dosage: str,
route: str,
frequency: str,
duration: str,
reason: str
) -> str:
result = {
"status": "success",
"message": f"Prescription Prepared: {medication_name} {dosage} {route} {frequency}",
"details": f"Duration: {duration}. Reason: {reason}"
}
return json.dumps(result)
@tool("check_drug_interactions", args_schema=InteractionCheckInput)
def check_drug_interactions(
potential_prescription: str,
current_medications: Optional[List[str]] = None,
allergies: Optional[List[str]] = None
) -> str:
warnings: List[str] = []
presc_lower = potential_prescription.lower().strip()
current = [m.lower().strip() for m in (current_medications or [])]
allergy_list = [a.lower().strip() for a in (allergies or [])]
# Normalize and lookup
rxcui = get_rxcui(potential_prescription)
label = get_openfda_label(rxcui=rxcui, drug_name=potential_prescription)
if not rxcui and not label:
warnings.append(f"INFO: Could not identify '{potential_prescription}'.")
# Allergy checks
for alg in allergy_list:
if alg == presc_lower:
warnings.append(f"CRITICAL ALLERGY: Patient allergic to '{alg}'.")
# Additional cross-allergy logic...
# Drug-drug interactions
if rxcui or label:
for med in current:
if med and med != presc_lower:
# interaction search on label sections
interactions = []
if label and label.get("drug_interactions"):
interactions = search_text_list(label["drug_interactions"], [med])
if interactions:
warnings.append(
f"Potential Interaction: '{potential_prescription}' & '{med}'. Snippets: {'; '.join(interactions)}"
)
else:
warnings.append(f"INFO: Skipped interaction check for '{potential_prescription}'.")
status = "warning" if warnings else "clear"
message = (
f"Interaction/Allergy check for '{potential_prescription}': {len(warnings)} issue(s)."
if warnings else
f"No major issues for '{potential_prescription}'."
)
return json.dumps({"status": status, "message": message, "warnings": warnings})
@tool("flag_risk", args_schema=FlagRiskInput)
def flag_risk(risk_description: str, urgency: str) -> str:
return json.dumps({
"status": "flagged",
"message": f"Risk '{risk_description}' flagged with {urgency} urgency."
})
# Initialize search tool and tool list
search_tool = TavilySearchResults(max_results=MAX_SEARCH_RESULTS, name="tavily_search_results")
all_tools = [order_lab_test, prescribe_medication, check_drug_interactions, flag_risk, search_tool]
# --- LangGraph Setup ---
class AgentState(TypedDict):
messages: Annotated[List[Any], operator.add]
patient_data: Optional[Dict]
summary: Optional[str]
interaction_warnings: Optional[List[str]]
# LLM and executor
llm = ChatGroq(temperature=AGENT_TEMPERATURE, model=AGENT_MODEL_NAME)
model_with_tools = llm.bind_tools(all_tools)
tool_executor = ToolExecutor(all_tools)
def agent_node(state: AgentState) -> Dict:
"""Invoke the LLM agent node."""
msgs = state['messages'][:]
if not msgs or not isinstance(msgs[0], SystemMessage):
msgs.insert(0, SystemMessage(content=ClinicalPrompts.SYSTEM_PROMPT))
try:
response = model_with_tools.invoke(msgs)
return {"messages": [response]}
except Exception as e:
traceback.print_exc()
err = AIMessage(content=f"Error: {e}")
return {"messages": [err]}
def tool_node(state: AgentState) -> Dict:
"""Execute any pending tool calls from the last AI message."""
last = state['messages'][-1]
if not isinstance(last, AIMessage) or not getattr(last, 'tool_calls', None):
return {"messages": [], "interaction_warnings": None}
calls = last.tool_calls
# Enforce safety: require interaction check before prescribing
blocked_ids = set()
for call in calls:
if call['name'] == 'prescribe_medication':
# block if no interaction check for this med
med = call['args'].get('medication_name', '').lower()
if not any(
c['name'] == 'check_drug_interactions' and
c['args'].get('potential_prescription', '').lower() == med
for c in calls
):
blocked_ids.add(call['id'])
valid_calls = [c for c in calls if c['id'] not in blocked_ids]
# Augment interaction checks with patient data
for c in valid_calls:
if c['name'] == 'check_drug_interactions':
c['args']['current_medications'] = state.get('patient_data', {}).get('medications', {}).get('current', [])
c['args']['allergies'] = state.get('patient_data', {}).get('allergies', [])
results = []
warnings: List[str] = []
try:
responses = tool_executor.batch(valid_calls, return_exceptions=True)
for call, resp in zip(valid_calls, responses):
if isinstance(resp, Exception):
traceback.print_exc()
content = json.dumps({"status": "error", "message": str(resp)})
else:
content = str(resp)
if call['name'] == 'check_drug_interactions':
data = json.loads(content)
if data.get('warnings'):
warnings.extend(data['warnings'])
results.append(ToolMessage(content=content, tool_call_id=call['id'], name=call['name']))
except Exception as e:
traceback.print_exc()
content = json.dumps({"status": "error", "message": str(e)})
for c in valid_calls:
results.append(ToolMessage(content=content, tool_call_id=c['id'], name=c['name']))
return {"messages": results, "interaction_warnings": warnings or None}
def reflection_node(state: AgentState) -> Dict:
"""Review interaction warnings and adjust plan if needed."""
warnings = state.get('interaction_warnings')
if not warnings:
return {"messages": [], "interaction_warnings": None}
# Find the AI message that triggered the warnings
trigger_id = None
for msg in reversed(state['messages']):
if isinstance(msg, ToolMessage) and msg.name == 'check_drug_interactions':
trigger_id = msg.tool_call_id
break
prompt = (
f"Interaction warnings:\n{json.dumps(warnings, indent=2)}\n"
"Provide a revised therapeutics plan addressing these issues."
)
msgs = [
SystemMessage(content="Safety reflection on drug interactions."),
HumanMessage(content=prompt)
]
try:
resp = llm.invoke(msgs)
return {"messages": [AIMessage(content=resp.content)], "interaction_warnings": None}
except Exception as e:
traceback.print_exc()
return {"messages": [AIMessage(content=f"Reflection error: {e}")], "interaction_warnings": None}
def should_continue(state: AgentState) -> str:
last = state['messages'][-1] if state['messages'] else None
if not isinstance(last, AIMessage):
return 'end_conversation_turn'
if getattr(last, 'tool_calls', None):
return 'continue_tools'
return 'end_conversation_turn'
def after_tools_router(state: AgentState) -> str:
if state.get('interaction_warnings'):
return 'reflect_on_warnings'
return 'continue_to_agent'
class ClinicalAgent:
def __init__(self):
graph = StateGraph(AgentState)
graph.add_node('agent', agent_node)
graph.add_node('tools', tool_node)
graph.add_node('reflection', reflection_node)
graph.set_entry_point('agent')
graph.add_conditional_edges(
'agent', should_continue,
{'continue_tools': 'tools', 'end_conversation_turn': END}
)
graph.add_conditional_edges(
'tools', after_tools_router,
{'reflect_on_warnings': 'reflection', 'continue_to_agent': 'agent'}
)
graph.add_edge('reflection', 'agent')
self.app = graph.compile()
def invoke_turn(self, state: Dict) -> Dict:
try:
result = self.app.invoke(state, {'recursion_limit': 15})
result.setdefault('summary', state.get('summary'))
result.setdefault('interaction_warnings', None)
return result
except Exception as e:
traceback.print_exc()
err = AIMessage(content=f"Critical error: {e}")
return {
'messages': state.get('messages', []) + [err],
'patient_data': state.get('patient_data'),
'summary': state.get('summary'),
'interaction_warnings': None
}
|