Spaces:
Sleeping
Sleeping
File size: 8,905 Bytes
fb37d48 36d7e68 d625ced 36d7e68 7039cd5 d625ced 36d7e68 8b780e6 36d7e68 3ebfdcb 8b780e6 36d7e68 8b780e6 36d7e68 8b780e6 36d7e68 8b780e6 36d7e68 d205403 36d7e68 d205403 36d7e68 699815d 7039cd5 9a3a8b0 36d7e68 699815d d205403 699815d d205403 36d7e68 d205403 36d7e68 d205403 7039cd5 d205403 7039cd5 d205403 7039cd5 d205403 7039cd5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 |
import os
os.system('pip install transformers')
os.system('pip install datasets')
os.system('pip install gradio')
os.system('pip install minijinja')
import gradio as gr
from huggingface_hub import InferenceClient
from transformers import pipeline
from datasets import load_dataset
import time
dataset = load_dataset("ibunescu/qa_legal_dataset_train")
# Use a pipeline as a high-level helper
pipe = pipeline("fill-mask", model="nlpaueb/legal-bert-base-uncased")
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
response = ""
for message in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = message.choices[0].delta.content
if token is not None:
response += token
yield response, history + [(message, response)]
def score_argument(argument):
merits_keywords = ["compelling", "convincing", "strong", "solid"]
laws_keywords = ["statute", "law", "regulation", "act"]
precedents_keywords = ["precedent", "case", "ruling", "decision"]
verdict_keywords = ["guilty", "innocent", "verdict", "judgment"]
merits_score = sum([1 for word in merits_keywords if word in argument.lower()])
laws_score = sum([1 for word in laws_keywords if word in argument.lower()])
precedents_score = sum([1 for word in precedents_keywords if word in argument.lower()])
verdict_score = sum([1 for word in verdict_keywords if word in argument.lower()])
length_score = len(argument.split())
merits_value = merits_score * 2
laws_value = laws_score * 3
precedents_value = precedents_score * 4
verdict_value = verdict_score * 5
total_score = merits_value + laws_value + precedents_value + verdict_value + length_score
return total_score
def color_code(score):
if score > 50:
return "green"
elif score > 30:
return "yellow"
else:
return "red"
# Custom CSS for white background and black text for input and output boxes
custom_css = """
body {
background-color: #ffffff;
color: #000000;
font-family: Arial, sans-serif;
}
.gradio-container {
max-width: 1000px;
margin: 0 auto;
padding: 20px;
background-color: #ffffff;
border: 1px solid #e0e0e0;
border-radius: 8px;
box-shadow: 0 2px 5px rgba(0, 0, 0, 0.1);
}
.gr-button {
background-color: #ffffff !important;
border-color: #ffffff !important;
color: #000000 !important;
}
.gr-button:hover {
background-color: #ffffff !important;
border-color: #004085 !important;
}
.gr-input, .gr-textbox, .gr-slider, .gr-markdown, .gr-chatbox {
border-radius: 4px;
border: 1px solid #ced4da;
background-color: #ffffff !important;
color: #000000 !important;
}
.gr-input:focus, .gr-textbox:focus, .gr-slider:focus {
border-color: #ffffff;
outline: 0;
box-shadow: 0 0 0 0.2rem rgba(255, 255, 255, 1.0);
}
#flagging-button {
display: none;
}
footer {
display: none;
}
.chatbox .chat-container .chat-message {
background-color: #ffffff !important;
color: #000000 !important;
}
.chatbox .chat-container .chat-message-input {
background-color: #ffffff !important;
color: #000000 !important;
}
.gr-markdown {
background-color: #ffffff !important;
color: #000000 !important;
}
.gr-markdown h1, .gr-markdown h2, .gr-markdown h3, .gr-markdown h4, .gr-markdown h5, .gr-markdown h6, .gr-markdown p, .gr-markdown ul, .gr-markdown ol, .gr-markdown li {
color: #000000 !important;
}
.score-box {
width: 60px;
height: 60px;
display: flex;
align-items: center;
justify-content: center;
font-size: 12px;
font-weight: bold;
color: black;
margin: 5px;
}
.scroll-box {
max-height: 200px;
overflow-y: scroll;
border: 1px solid #ced4da;
padding: 10px;
border-radius: 4px;
}
"""
# Function to facilitate the conversation between the two chatbots
def chat_between_bots(system_message1, system_message2, max_tokens, temperature, top_p, history1, history2, shared_history, message):
response1, history1 = list(respond(message, history1, system_message1, max_tokens, temperature, top_p))[-1]
response2, history2 = list(respond(message, history2, system_message2, max_tokens, temperature, top_p))[-1]
shared_history.append(f"Prosecutor: {response1}")
shared_history.append(f"Defense Attorney: {response2}")
max_length = max(len(response1), len(response2))
response1 = response1[:max_length]
response2 = response2[:max_length]
score1 = score_argument(response1)
score2 = score_argument(response2)
prosecutor_color = color_code(score1)
defense_color = color_code(score2)
prosecutor_score_color = f"<div class='score-box' style='background-color:{prosecutor_color};'>Score: {score1}</div>"
defense_score_color = f"<div class='score-box' style='background-color:{defense_color};'>Score: {score2}</div>"
return response1, response2, history1, history2, shared_history, f"{response1}\n\n{response2}", prosecutor_score_color, defense_score_color
def update_pdf_gallery(pdf_files):
return pdf_files
def add_message(history, message):
for x in message["files"]:
history.append(((x,), None))
if message["text"] is not None:
history.append((message["text"], None))
return history, gr.MultimodalTextbox(value=None, interactive=False)
def bot(history):
response = "**That's cool!**"
history[-1][1] = ""
for character in response:
history[-1][1] += character
time.sleep(0.05)
yield history
def print_like_dislike(x: gr.LikeData):
print(x.index, x.value, x.liked)
with gr.Blocks(css=custom_css) as demo:
history1 = gr.State([])
history2 = gr.State([])
shared_history = gr.State([])
pdf_files = gr.State([])
with gr.Tab("Argument Evaluation"):
message = gr.Textbox(label="Case to Argue")
system_message1 = gr.State("You are an expert Prosecutor. Give your best arguments for the case on behalf of the prosecution.")
system_message2 = gr.State("You are an expert Defense Attorney. Give your best arguments for the case on behalf of the Defense.")
max_tokens = gr.State(512)
temperature = gr.State(0.6)
top_p = gr.State(0.95)
with gr.Row():
with gr.Column(scale=4):
prosecutor_response = gr.Textbox(label="Prosecutor's Response", interactive=True)
prosecutor_response.style(container=True).add_class("scroll-box")
with gr.Column(scale=1):
prosecutor_score_color = gr.HTML()
with gr.Column(scale=4):
defense_response = gr.Textbox(label="Defense Attorney's Response", interactive=True)
defense_response.style(container=True).add_class("scroll-box")
with gr.Column(scale=1):
defense_score_color = gr.HTML()
shared_argument = gr.Textbox(label="Case Outcome", interactive=True)
submit_btn = gr.Button("Argue")
submit_btn.click(chat_between_bots, inputs=[system_message1, system_message2, max_tokens, temperature, top_p, history1, history2, shared_history, message], outputs=[prosecutor_response, defense_response, history1, history2, shared_history, shared_argument, prosecutor_score_color, defense_score_color])
with gr.Tab("PDF Management"):
pdf_upload = gr.File(label="Upload Case Files (PDF)", file_types=[".pdf"])
pdf_gallery = gr.Gallery(label="PDF Gallery")
pdf_upload_btn = gr.Button("Update PDF Gallery")
pdf_upload_btn.click(update_pdf_gallery, inputs=[pdf_upload], outputs=[pdf_gallery, pdf_files])
with gr.Tab("Chatbot"):
chatbot = gr.Chatbot(
[],
elem_id="chatbot",
bubble_full_width=False
)
chat_input = gr.MultimodalTextbox(interactive=True, file_types=["image"], placeholder="Enter message or upload file...", show_label=False)
chat_msg = chat_input.submit(add_message, [chatbot, chat_input], [chatbot, chat_input])
bot_msg = chat_msg.then(bot, chatbot, chatbot, api_name="bot_response")
bot_msg.then(lambda: gr.MultimodalTextbox(interactive=True), None, [chat_input])
chatbot.like(print_like_dislike, None, None)
demo.queue()
demo.launch()
|