Spaces:
Running
Running
File size: 4,519 Bytes
0e95308 018c04e 0e95308 018c04e 0e95308 7f8d2fb 84f2063 787aea7 ca1fb1d 2978c6a 84f2063 2978c6a 85be5b5 2978c6a ca1fb1d 2978c6a ca1fb1d 84f2063 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 |
import json
from sentence_transformers import SentenceTransformer, util
from groq import Groq
import datetime
import requests
from io import BytesIO
from PIL import Image, ImageDraw, ImageFont
import numpy as np
from dotenv import load_dotenv
import os
# Load environment variables
load_dotenv()
# Initialize Groq client
groq_client = Groq(api_key=os.getenv("GROQ_API_KEY"))
# Load models and dataset
similarity_model = SentenceTransformer('paraphrase-MiniLM-L6-v2')
# Configuration
HF_DATASET_REPO = "midrees2806/unmatched_queries" # Your dataset repo
HF_TOKEN = os.getenv("HF_TOKEN") # From Space secrets
# Load dataset (automatically using the path)
with open('dataset.json', 'r') as f:
dataset = json.load(f)
# Precompute embeddings
dataset_questions = [item.get("input", "").lower().strip() for item in dataset]
dataset_answers = [item.get("response", "") for item in dataset]
dataset_embeddings = similarity_model.encode(dataset_questions, convert_to_tensor=True)
# --- Unmatched Queries Handler ---
def manage_unmatched_queries(query: str):
"""Save unmatched queries to HF Dataset with error handling"""
try:
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
# Load existing dataset or create new
try:
ds = load_dataset(HF_DATASET_REPO, token=HF_TOKEN)
df = ds["train"].to_pandas()
except:
df = pd.DataFrame(columns=["Query", "Timestamp", "Processed"])
# Append new query (avoid duplicates)
if query not in df["Query"].values:
new_entry = {"Query": query, "Timestamp": timestamp, "Processed": False}
df = pd.concat([df, pd.DataFrame([new_entry])], ignore_index=True)
# Push to Hub
updated_ds = Dataset.from_pandas(df)
updated_ds.push_to_hub(HF_DATASET_REPO, token=HF_TOKEN)
except Exception as e:
print(f"Failed to save query: {e}")
# --- Enhanced LLM Query ---
def query_groq_llm(prompt, model_name="llama3-70b-8192"):
try:
chat_completion = groq_client.chat.completions.create(
messages=[{
"role": "user",
"content": prompt
}],
model=model_name,
temperature=0.7,
max_tokens=500
)
return chat_completion.choices[0].message.content.strip()
except Exception as e:
print(f"Error querying Groq API: {e}")
return ""
def get_best_answer(user_input):
user_input_lower = user_input.lower().strip()
# π Check if question is about fee
if any(keyword in user_input_lower for keyword in ["fee", "fees", "charges", "semester fee"]):
return (
"π° For complete and up-to-date fee details for this program, we recommend visiting the official University of Education fee structure page.\n"
"Youβll find comprehensive information regarding tuition, admission charges, and other applicable fees there.\n"
"π https://ue.edu.pk/allfeestructure.php"
)
# π Continue with normal similarity-based logic
user_embedding = similarity_model.encode(user_input_lower, convert_to_tensor=True)
similarities = util.pytorch_cos_sim(user_embedding, dataset_embeddings)[0]
best_match_idx = similarities.argmax().item()
best_score = similarities[best_match_idx].item()
if best_score >= 0.65:
original_answer = dataset_answers[best_match_idx]
prompt = f"""As an official assistant for University of Education Lahore, provide a clear response:
Question: {user_input}
Original Answer: {original_answer}
Improved Answer:"""
else:
prompt = f"""As an official assistant for University of Education Lahore, provide a helpful response:
Include relevant details about university policies.
If unsure, direct to official channels.
Question: {user_input}
Official Answer:"""
llm_response = query_groq_llm(prompt)
if llm_response:
for marker in ["Improved Answer:", "Official Answer:"]:
if marker in llm_response:
response = llm_response.split(marker)[-1].strip()
break
else:
response = llm_response
else:
response = dataset_answers[best_match_idx] if best_score >= 0.65 else """For official information:
π +92-42-99262231-33
βοΈ [email protected]
π ue.edu.pk"""
return response
|