Spaces:
Running
Running
import json | |
from sentence_transformers import SentenceTransformer, util | |
from groq import Groq | |
import datetime | |
import requests | |
from io import BytesIO | |
from PIL import Image, ImageDraw, ImageFont | |
import numpy as np | |
from dotenv import load_dotenv | |
import os | |
# Load environment variables | |
load_dotenv() | |
# Initialize Groq client | |
groq_client = Groq(api_key=os.getenv("GROQ_API_KEY")) | |
# Load models and dataset | |
similarity_model = SentenceTransformer('paraphrase-MiniLM-L6-v2') | |
# Load dataset (automatically using the path) | |
with open('dataset.json', 'r') as f: | |
dataset = json.load(f) | |
# Precompute embeddings | |
dataset_questions = [item.get("input", "").lower().strip() for item in dataset] | |
dataset_answers = [item.get("response", "") for item in dataset] | |
dataset_embeddings = similarity_model.encode(dataset_questions, convert_to_tensor=True) | |
def query_groq_llm(prompt, model_name="llama3-70b-8192"): | |
try: | |
chat_completion = groq_client.chat.completions.create( | |
messages=[{ | |
"role": "user", | |
"content": prompt | |
}], | |
model=model_name, | |
temperature=0.7, | |
max_tokens=500 | |
) | |
return chat_completion.choices[0].message.content.strip() | |
except Exception as e: | |
print(f"Error querying Groq API: {e}") | |
return "" | |
def get_best_answer(user_input): | |
user_input_lower = user_input.lower().strip() | |
# π Check if question is about fee | |
if any(keyword in user_input_lower for keyword in ["semester fee","semester fees"]): | |
return ( | |
"π° For complete and up-to-date fee details for this program, we recommend visiting the official University of Education fee structure page.\n" | |
"Youβll find comprehensive information regarding tuition, admission charges, and other applicable fees there.\n" | |
"π https://ue.edu.pk/allfeestructure.php" | |
) | |
# π Continue with normal similarity-based logic | |
user_embedding = similarity_model.encode(user_input_lower, convert_to_tensor=True) | |
similarities = util.pytorch_cos_sim(user_embedding, dataset_embeddings)[0] | |
best_match_idx = similarities.argmax().item() | |
best_score = similarities[best_match_idx].item() | |
if best_score >= 0.65: | |
original_answer = dataset_answers[best_match_idx] | |
prompt = f"""As an official assistant for University of Education Lahore, provide a clear response: | |
Question: {user_input} | |
Original Answer: {original_answer} | |
Improved Answer:""" | |
else: | |
prompt = f"""As an official assistant for University of Education Lahore, provide a helpful response: | |
Include relevant details about university policies. | |
If unsure, direct to official channels. | |
Question: {user_input} | |
Official Answer:""" | |
llm_response = query_groq_llm(prompt) | |
if llm_response: | |
for marker in ["Improved Answer:", "Official Answer:"]: | |
if marker in llm_response: | |
response = llm_response.split(marker)[-1].strip() | |
break | |
else: | |
response = llm_response | |
else: | |
response = dataset_answers[best_match_idx] if best_score >= 0.65 else """For official information: | |
π +92-42-99262231-33 | |
βοΈ [email protected] | |
π ue.edu.pk""" | |
return response |