Spaces:
Running
Running
File size: 3,354 Bytes
0e95308 bf8e143 0e95308 bf8e143 0e95308 bf8e143 0e95308 bf8e143 3e83acd a9f7e8d bf8e143 0e95308 bf8e143 0e95308 bf8e143 0e95308 bf8e143 0e95308 bf8e143 0e95308 bf8e143 0e95308 04356f4 cb720fe 0280e01 a9f7e8d 0280e01 04356f4 bf8e143 04356f4 0280e01 a9f7e8d 7b27360 2978c6a 04356f4 2978c6a a9f7e8d 2978c6a a9f7e8d 04356f4 2978c6a 04356f4 a9f7e8d 04356f4 a9f7e8d 2978c6a a9f7e8d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 |
import json
from sentence_transformers import SentenceTransformer, util
from groq import Groq
import datetime
import requests
from io import BytesIO
from PIL import Image, ImageDraw, ImageFont
import numpy as np
from dotenv import load_dotenv
import os
# Load environment variables
load_dotenv()
# Initialize Groq client
groq_client = Groq(api_key=os.getenv("GROQ_API_KEY"))
# Load models and dataset
similarity_model = SentenceTransformer('paraphrase-MiniLM-L6-v2')
# Load dataset (automatically using the path)
with open('dataset.json', 'r') as f:
dataset = json.load(f)
# Precompute embeddings
dataset_questions = [item.get("input", "").lower().strip() for item in dataset]
dataset_answers = [item.get("response", "") for item in dataset]
dataset_embeddings = similarity_model.encode(dataset_questions, convert_to_tensor=True)
def query_groq_llm(prompt, model_name="llama3-70b-8192"):
try:
chat_completion = groq_client.chat.completions.create(
messages=[{
"role": "user",
"content": prompt
}],
model=model_name,
temperature=0.7,
max_tokens=500
)
return chat_completion.choices[0].message.content.strip()
except Exception as e:
print(f"Error querying Groq API: {e}")
return ""
def get_best_answer(user_input):
user_input_lower = user_input.lower().strip()
# π Check if question is about fee
if any(keyword in user_input_lower for keyword in ["semester fee","semester fees"]):
return (
"π° For complete and up-to-date fee details for this program, we recommend visiting the official University of Education fee structure page.\n"
"Youβll find comprehensive information regarding tuition, admission charges, and other applicable fees there.\n"
"π https://ue.edu.pk/allfeestructure.php"
)
# π Continue with normal similarity-based logic
user_embedding = similarity_model.encode(user_input_lower, convert_to_tensor=True)
similarities = util.pytorch_cos_sim(user_embedding, dataset_embeddings)[0]
best_match_idx = similarities.argmax().item()
best_score = similarities[best_match_idx].item()
if best_score >= 0.65:
original_answer = dataset_answers[best_match_idx]
prompt = f"""As an official assistant for University of Education Lahore, provide a clear response:
Question: {user_input}
Original Answer: {original_answer}
Improved Answer:"""
else:
prompt = f"""As an official assistant for University of Education Lahore, provide a helpful response:
Include relevant details about university policies.
If unsure, direct to official channels.
Question: {user_input}
Official Answer:"""
llm_response = query_groq_llm(prompt)
if llm_response:
for marker in ["Improved Answer:", "Official Answer:"]:
if marker in llm_response:
response = llm_response.split(marker)[-1].strip()
break
else:
response = llm_response
else:
response = dataset_answers[best_match_idx] if best_score >= 0.65 else """For official information:
π +92-42-99262231-33
βοΈ [email protected]
π ue.edu.pk"""
return response |