Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import GPT2LMHeadModel, GPT2Tokenizer | |
# Load the model and tokenizer from Hugging Face model hub | |
model_name = "gpt2" # You can replace "gpt2" with your fine-tuned model if you have one | |
model = GPT2LMHeadModel.from_pretrained(model_name) | |
tokenizer = GPT2Tokenizer.from_pretrained(model_name) | |
def chat_with_me(input_text, history=[]): | |
# Encode the new input with history | |
new_input_ids = tokenizer.encode(input_text + tokenizer.eos_token, return_tensors="pt") | |
# Append the new user input to the chat history | |
bot_input_ids = torch.cat([torch.tensor(history), new_input_ids], dim=-1) if history else new_input_ids | |
# Generate the model's response | |
history_ids = model.generate(bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id) | |
# Decode the response and append to history | |
response = tokenizer.decode(history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True) | |
history += new_input_ids.tolist() | |
return response, history | |
with gr.Blocks() as demo: | |
with gr.Row(): | |
chat = gr.Chatbot() | |
user_input = gr.Textbox(placeholder="Ask me anything...") | |
with gr.Row(): | |
clear = gr.Button("Clear") | |
# Define interactions | |
user_input.submit(chat_with_me, [user_input, chat], [chat, user_input]) | |
clear.click(lambda: None, None, chat) | |
demo.launch() | |