File size: 10,498 Bytes
f1fd41e 7ae54ea 98ee9d3 f1fd41e 7ae54ea 6f93dce 580eaed f1fd41e 6f93dce 2f665a8 6f93dce 98ee9d3 d10798f 2f665a8 6f93dce 2f665a8 f1fd41e 2f665a8 4a9bfbe 2f665a8 4a9bfbe 98ee9d3 4a9bfbe 2f665a8 4a9bfbe 2f665a8 4a9bfbe 98ee9d3 2f665a8 6f93dce 7ae54ea 2f665a8 7ae54ea 98ee9d3 7ae54ea 98ee9d3 7ae54ea 98ee9d3 7ae54ea f1fd41e 98ee9d3 4a9bfbe 2f665a8 7ae54ea 98ee9d3 2f665a8 98ee9d3 2f665a8 98ee9d3 2f665a8 98ee9d3 2f665a8 f1fd41e 2f665a8 7ae54ea 2f665a8 7ae54ea 2f665a8 98ee9d3 2f665a8 7ae54ea 2f665a8 7ae54ea 6f93dce 2f665a8 6f93dce f1fd41e 7ae54ea 6f93dce f1fd41e 6f93dce 98ee9d3 4a9bfbe 2f665a8 7ae54ea 6f93dce 7ae54ea 6f93dce 2f665a8 6f93dce 2f665a8 98ee9d3 2f665a8 f1fd41e 2f665a8 98ee9d3 2f665a8 f1fd41e 7ae54ea 98ee9d3 f1fd41e 98ee9d3 f1fd41e 98ee9d3 2f665a8 f1fd41e 7ae54ea 98ee9d3 f1fd41e 7ae54ea f1fd41e 98ee9d3 7ae54ea f1fd41e 6f93dce 98ee9d3 2f665a8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 |
import os
import time
import json
import gc # For garbage collection
from pathlib import Path
from flask import Flask, request, jsonify, Response
from flask_cors import CORS
import torch
# Create cache directory if not exists
cache_dir = Path(os.getenv('TRANSFORMERS_CACHE', '/app/cache'))
cache_dir.mkdir(parents=True, exist_ok=True)
app = Flask(__name__)
CORS(app) # Allow cross-origin requests
# Model configuration
# Use DeepSeek R1 Distill Qwen 1.5B model (much lighter than 7B)
MODEL_NAME = "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B"
MAX_NEW_TOKENS = 256
DEVICE = "cpu" if not torch.cuda.is_available() else "cuda"
# Initialize model variables
tokenizer = None
model = None
def load_model():
"""Load model on first request to save memory at startup"""
global tokenizer, model
if tokenizer is not None and model is not None:
return True
try:
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
print(f"Loading model {MODEL_NAME}...")
print(f"Using device: {DEVICE}")
print(f"Cache directory: {cache_dir}")
# Use 4-bit quantization for memory efficiency if on CUDA
if DEVICE == "cuda":
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.float16,
bnb_4bit_quant_type="nf4",
bnb_4bit_use_double_quant=True
)
else:
# For CPU, we'll use a different optimization approach
quantization_config = None
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(
MODEL_NAME,
cache_dir=str(cache_dir),
trust_remote_code=True
)
# Configure token if HF_TOKEN is set
hf_token = os.environ.get("HF_TOKEN")
token_kwargs = {"token": hf_token} if hf_token else {}
# Additional memory optimization settings for low resource environments
if DEVICE == "cpu":
# Load model with 8-bit quantization for CPU
try:
# Try int8 quantization for CPU
model = AutoModelForCausalLM.from_pretrained(
MODEL_NAME,
cache_dir=str(cache_dir),
load_in_8bit=True,
low_cpu_mem_usage=True,
trust_remote_code=True,
**token_kwargs
)
except Exception as e:
print(f"8-bit quantization failed, falling back to standard loading: {str(e)}")
model = AutoModelForCausalLM.from_pretrained(
MODEL_NAME,
cache_dir=str(cache_dir),
low_cpu_mem_usage=True,
trust_remote_code=True,
**token_kwargs
)
else:
# Load model with 4-bit quantization for CUDA
model = AutoModelForCausalLM.from_pretrained(
MODEL_NAME,
cache_dir=str(cache_dir),
device_map="auto",
torch_dtype=torch.float16,
quantization_config=quantization_config,
low_cpu_mem_usage=True,
trust_remote_code=True,
**token_kwargs
)
print("β
Model loaded successfully!")
return True
except Exception as e:
print(f"β Model loading failed: {str(e)}")
return False
def stream_generator(prompt):
"""Generator function for streaming response with thinking steps"""
# Ensure model is loaded
if not load_model():
yield json.dumps({"type": "error", "content": "Model not loaded"}) + '\n'
return
# Thinking phases
thinking_steps = [
"π Analyzing your question...",
"π§ Processing...",
"π‘ Formulating response..."
]
# Stream thinking steps (fewer steps, faster timing for lighter model)
for step in thinking_steps:
yield json.dumps({"type": "thinking", "content": step}) + '\n'
time.sleep(0.5) # Reduced timing for faster response
# Prepare streaming generation
try:
# Format prompt for the model (DeepSeek specific)
formatted_prompt = f"<|im_start|>user\n{prompt}<|im_end|>\n<|im_start|>assistant\n"
inputs = tokenizer(formatted_prompt, return_tensors="pt")
if DEVICE == "cuda":
inputs = inputs.to("cuda")
# Use memory efficient approach
with torch.no_grad():
generated_ids = model.generate(
**inputs,
max_new_tokens=MAX_NEW_TOKENS,
temperature=0.7,
top_p=0.9,
do_sample=True,
pad_token_id=tokenizer.eos_token_id,
return_dict_in_generate=True,
output_scores=False)
# Get output sequence
output_ids = generated_ids.sequences[0][len(inputs.input_ids[0]):]
# Stream in slightly larger chunks for better performance
full_output = ""
chunk_size = 5 # Increased number of tokens per chunk
for i in range(0, len(output_ids), chunk_size):
chunk_ids = output_ids[i:i+chunk_size]
chunk_text = tokenizer.decode(chunk_ids, skip_special_tokens=True)
full_output += chunk_text
yield json.dumps({
"type": "answer",
"content": chunk_text
}) + '\n'
# Smaller delay for faster streaming
time.sleep(0.03)
except Exception as e:
import traceback
error_details = f"Error: {str(e)}\n{traceback.format_exc()}"
print(error_details)
yield json.dumps({
"type": "error",
"content": f"Generation error: {str(e)}"
}) + '\n'
# Signal completion
yield json.dumps({"type": "complete"}) + '\n'
# Clean up memory aggressively
if DEVICE == "cuda":
torch.cuda.empty_cache()
gc.collect()
@app.route('/stream_chat', methods=['POST'])
def stream_chat():
data = request.get_json()
prompt = data.get('prompt', '').strip()
if not prompt:
return jsonify({"error": "Empty prompt"}), 400
return Response(
stream_generator(prompt),
mimetype='text/event-stream',
headers={
'Cache-Control': 'no-cache',
'X-Accel-Buffering': 'no', # Prevent Nginx buffering
'Connection': 'keep-alive'
}
)
@app.route('/chat', methods=['POST'])
def chat():
# Ensure model is loaded
if not load_model():
return jsonify({"error": "Model failed to load"}), 500
data = request.get_json()
prompt = data.get('prompt', '').strip()
if not prompt:
return jsonify({"error": "Empty prompt"}), 400
try:
# Format prompt for DeepSeek model
formatted_prompt = f"<|im_start|>user\n{prompt}<|im_end|>\n<|im_start|>assistant\n"
inputs = tokenizer(formatted_prompt, return_tensors="pt")
if DEVICE == "cuda":
inputs = inputs.to("cuda")
with torch.no_grad():
outputs = model.generate(
**inputs,
max_new_tokens=MAX_NEW_TOKENS,
temperature=0.7,
top_p=0.9,
do_sample=True,
pad_token_id=tokenizer.eos_token_id)
response = tokenizer.decode(outputs[0][len(inputs.input_ids[0]):], skip_special_tokens=True)
# Clean up memory
if DEVICE == "cuda":
torch.cuda.empty_cache()
gc.collect()
return jsonify({"response": response})
except Exception as e:
import traceback
error_details = f"Error: {str(e)}\n{traceback.format_exc()}"
print(error_details)
return jsonify({"error": str(e)}), 500
@app.route('/health', methods=['GET'])
def health_check():
model_loaded = tokenizer is not None and model is not None
memory_info = "N/A"
# Get memory usage stats
if torch.cuda.is_available():
memory_info = f"{torch.cuda.memory_allocated()/1024**2:.2f}MB / {torch.cuda.get_device_properties(0).total_memory/1024**2:.2f}MB"
else:
import psutil
memory_info = f"{psutil.virtual_memory().used/1024**3:.2f}GB / {psutil.virtual_memory().total/1024**3:.2f}GB"
try:
# Check if we need to load the model
if not model_loaded and request.args.get('load') == 'true':
model_loaded = load_model()
except Exception as e:
print(f"Health check error: {str(e)}")
status = {
"status": "ok" if model_loaded else "waiting",
"model": MODEL_NAME,
"model_loaded": model_loaded,
"device": DEVICE,
"cache_dir": str(cache_dir),
"max_tokens": MAX_NEW_TOKENS,
"memory_usage": memory_info
}
return jsonify(status)
@app.route('/unload', methods=['POST'])
def unload_model():
"""Endpoint to manually unload model and free memory"""
global model, tokenizer
if model is not None:
del model
model = None
if tokenizer is not None:
del tokenizer
tokenizer = None
# Force garbage collection
if torch.cuda.is_available():
torch.cuda.empty_cache()
gc.collect()
return jsonify({"status": "Model unloaded", "memory_freed": True})
@app.route('/')
def home():
return jsonify({
"service": "DeepSeek-1.5B Chat API",
"status": "online",
"endpoints": {
"POST /chat": "Single-response chat",
"POST /stream_chat": "Streaming chat with thinking steps",
"GET /health": "Service health check",
"POST /unload": "Unload model to free memory"
},
"config": {
"model": MODEL_NAME,
"max_tokens": MAX_NEW_TOKENS,
"device": DEVICE,
"cache_location": str(cache_dir)
}
})
if __name__ == '__main__':
# Load model at startup only if explicitly requested
if os.getenv('PRELOAD_MODEL', 'false').lower() == 'true':
load_model()
port = int(os.environ.get("PORT", 5000))
app.run(host='0.0.0.0', port=port) |