Spaces:
mikitona
/
Running on Zero

File size: 27,900 Bytes
fae2f45
 
 
 
 
 
 
4b4cde1
fae2f45
4b4cde1
 
 
 
 
 
 
 
 
 
 
 
 
 
c4b24c1
 
fae2f45
 
 
 
 
b080b67
 
fae2f45
b080b67
 
4b4cde1
fae2f45
13c074c
fae2f45
 
de3f501
 
 
 
 
3dfaeda
 
 
 
 
 
 
 
 
 
de3f501
e864180
de3f501
3dfaeda
 
 
 
 
 
 
 
 
 
de3f501
 
 
 
 
 
 
 
 
4b4cde1
 
 
 
b080b67
 
4b4cde1
 
 
 
 
fae2f45
b080b67
4b4cde1
 
 
 
 
 
 
 
 
 
 
 
 
 
b080b67
4b4cde1
 
 
 
 
 
 
 
 
 
 
 
b080b67
4b4cde1
 
 
 
fae2f45
b080b67
4b4cde1
 
 
fae2f45
b080b67
9c19d71
4b4cde1
 
 
 
 
 
 
 
 
 
fae2f45
4b4cde1
 
 
 
 
 
 
 
 
 
 
 
 
70f1ccf
 
 
 
4b4cde1
 
 
b080b67
9184ef3
 
4b4cde1
 
 
 
b080b67
4b4cde1
 
b080b67
4b4cde1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b080b67
4b4cde1
 
 
 
fc23e64
4b4cde1
 
 
 
fae2f45
4b4cde1
b080b67
4b4cde1
 
 
 
 
 
 
 
 
 
 
 
 
 
b080b67
4b4cde1
 
 
 
fc23e64
4b4cde1
fc23e64
 
4b4cde1
fc23e64
4b4cde1
 
 
 
 
 
 
 
 
b080b67
fae2f45
 
b080b67
fae2f45
 
 
 
4b4cde1
fae2f45
4b4cde1
 
 
 
 
 
b080b67
 
 
4b4cde1
fc23e64
4b4cde1
b080b67
b362322
b080b67
 
 
 
4b4cde1
 
b362322
b080b67
4b4cde1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b080b67
4b4cde1
 
b080b67
4b4cde1
 
 
 
 
fae2f45
f346f96
 
 
fc23e64
fae2f45
 
 
4b4cde1
fae2f45
b080b67
 
 
 
 
 
 
fae2f45
 
 
 
4b4cde1
fae2f45
b080b67
 
 
fae2f45
4b4cde1
b080b67
 
 
4b4cde1
b080b67
 
 
4b4cde1
fae2f45
 
4b4cde1
 
 
 
fae2f45
 
 
 
 
 
 
 
4b4cde1
fae2f45
 
 
 
 
 
 
 
 
4b4cde1
fae2f45
 
 
4b4cde1
fae2f45
 
4b4cde1
 
fae2f45
4b4cde1
fae2f45
 
4b4cde1
 
 
 
 
 
 
 
 
 
b080b67
4b4cde1
 
 
 
 
 
fae2f45
fc23e64
fae2f45
4b4cde1
 
 
 
 
 
fae2f45
 
 
 
 
 
4b4cde1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b080b67
4b4cde1
b080b67
6a7cbe5
4b4cde1
 
b080b67
4b4cde1
b080b67
4b4cde1
 
 
 
 
b080b67
4b4cde1
 
 
b080b67
4b4cde1
 
b080b67
4b4cde1
 
 
 
 
 
 
 
 
 
 
b080b67
4b4cde1
 
 
 
 
 
 
 
 
 
b080b67
 
4b4cde1
 
 
 
 
 
b080b67
4b4cde1
 
b080b67
4b4cde1
 
 
b080b67
 
4b4cde1
b080b67
fc23e64
811b1fa
4b4cde1
b080b67
 
 
 
 
 
4b4cde1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b080b67
 
4b4cde1
 
 
b080b67
4b4cde1
811b1fa
fae2f45
 
b080b67
 
4b4cde1
b080b67
4b4cde1
b080b67
4b4cde1
b080b67
4b4cde1
b080b67
4b4cde1
 
 
 
 
 
 
 
 
b080b67
4b4cde1
 
b080b67
4b4cde1
b080b67
4b4cde1
b080b67
4b4cde1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b080b67
 
4b4cde1
 
b080b67
4b4cde1
b080b67
4b4cde1
b080b67
4b4cde1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b080b67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc23e64
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
import os
import gradio as gr
import argparse
import numpy as np
import torch
import einops
import copy
import math
import time
import random
import spaces
import re
import uuid

from PIL import Image
from SUPIR.util import HWC3, upscale_image, fix_resize, convert_dtype, create_SUPIR_model, load_QF_ckpt
from huggingface_hub import hf_hub_download
from pillow_heif import register_heif_opener

register_heif_opener()

max_64_bit_int = np.iinfo(np.int32).max

from llava.llava_agent import LLavaAgent
from CKPT_PTH import LLAVA_MODEL_PATH

parser = argparse.ArgumentParser()
parser.add_argument("--opt", type=str, default='options/SUPIR_v0.yaml')
parser.add_argument("--ip", type=str, default='127.0.0.1')
parser.add_argument("--port", type=int, default='6688')
parser.add_argument("--no_llava", action='store_true', default=True)  # False
parser.add_argument("--use_image_slider", action='store_true', default=False)  # False
parser.add_argument("--log_history", action='store_true', default=False)
parser.add_argument("--loading_half_params", action='store_true', default=True)  # False
parser.add_argument("--use_tile_vae", action='store_true', default=False)  # False
parser.add_argument("--encoder_tile_size", type=int, default=512)
parser.add_argument("--decoder_tile_size", type=int, default=64)
parser.add_argument("--load_8bit_llava", action='store_true', default=True)
args = parser.parse_args()

use_llava = not args.no_llava

if torch.cuda.device_count() >= 2:
    SUPIR_device = 'cuda:0'
    LLaVA_device = 'cuda:1'
    # Load SUPIR
    model, default_setting = create_SUPIR_model(args.opt, SUPIR_sign='Q', load_default_setting=True)
    if args.loading_half_params:
        model = model.half()
    if args.use_tile_vae:
        model.init_tile_vae(encoder_tile_size=args.encoder_tile_size, decoder_tile_size=args.decoder_tile_size)
    model = model.to(SUPIR_device)
    model.first_stage_model.denoise_encoder_s1 = copy.deepcopy(model.first_stage_model.denoise_encoder)
    model.current_model = 'v0-Q'
    ckpt_Q, ckpt_F = load_QF_ckpt(args.opt)
elif torch.cuda.device_count() == 1:
    SUPIR_device = 'cuda:0'
    LLaVA_device = 'cuda:0'
    # Load SUPIR
    model, default_setting = create_SUPIR_model(args.opt, SUPIR_sign='Q', load_default_setting=True)
    if args.loading_half_params:
        model = model.half()
    if args.use_tile_vae:
        model.init_tile_vae(encoder_tile_size=args.encoder_tile_size, decoder_tile_size=args.decoder_tile_size)
    model = model.to(SUPIR_device)
    model.first_stage_model.denoise_encoder_s1 = copy.deepcopy(model.first_stage_model.denoise_encoder)
    model.current_model = 'v0-Q'
    ckpt_Q, ckpt_F = load_QF_ckpt(args.opt)
else:
    raise ValueError('Currently support CUDA only.')

# load LLaVA
if use_llava:
    llava_agent = LLavaAgent(LLAVA_MODEL_PATH, device=LLaVA_device, load_8bit=args.load_8bit_llava, load_4bit=False)
else:
    llava_agent = None


def check_upload(input_image):
    if input_image is None:
        raise gr.Error("Please provide an image to restore.")
    return gr.update(visible=True)


def update_seed(is_randomize_seed, seed):
    if is_randomize_seed:
        return random.randint(0, max_64_bit_int)
    return seed


def reset():
    return [
        None,
        0,
        None,
        None,
        "Cinematic, High Contrast, highly detailed, taken using a Canon EOS R camera, hyper detailed photo - realistic maximum detail, 32k, Color Grading, ultra HD, extreme meticulous detailing, skin pore detailing, hyper sharpness, perfect without deformations.",
        "painting, oil painting, illustration, drawing, art, sketch, anime, cartoon, CG Style, 3D render, unreal engine, blurring, aliasing, unsharp, weird textures, ugly, dirty, messy, worst quality, low quality, frames, watermark, signature, jpeg artifacts, deformed, lowres, over-smooth",
        1,
        1024,
        1,
        2,
        50,
        -1.0,
        1.0,
        default_setting.s_cfg_Quality if torch.cuda.device_count() > 0 else 1.0,
        True,
        random.randint(0, max_64_bit_int),
        5,
        1.003,
        "Wavelet",
        "fp32",
        "fp32",
        1.0,
        True,
        False,
        default_setting.spt_linear_CFG_Quality if torch.cuda.device_count() > 0 else 1.0,
        0.0,
        "v0-Q",
        "input",
        6
    ]


def check(input_image):
    if input_image is None:
        raise gr.Error("Please provide an image to restore.")


@spaces.GPU(duration=20)
def stage1_process(
    input_image,
    gamma_correction,
    diff_dtype,
    ae_dtype
):
    print('stage1_process ==>>')
    if torch.cuda.device_count() == 0:
        gr.Warning('Set this space to GPU config to make it work.')
        return None, None
    torch.cuda.set_device(SUPIR_device)
    LQ = HWC3(np.array(Image.open(input_image)))
    LQ = fix_resize(LQ, 512)
    # stage1
    LQ = np.array(LQ) / 255 * 2 - 1
    LQ = torch.tensor(LQ, dtype=torch.float32).permute(2, 0, 1).unsqueeze(0).to(SUPIR_device)[:, :3, :, :]

    model.ae_dtype = convert_dtype(ae_dtype)
    model.model.dtype = convert_dtype(diff_dtype)

    LQ = model.batchify_denoise(LQ, is_stage1=True)
    LQ = (LQ[0].permute(1, 2, 0) * 127.5 + 127.5).cpu().numpy().round().clip(0, 255).astype(np.uint8)
    # gamma correction
    LQ = LQ / 255.0
    #LQ = np.power(LQ, gamma_correction)
    LQ = np.power(LQ, float(gamma_correction) if isinstance(gamma_correction, (int, float)) else gamma_correction.value)


    LQ *= 255.0
    LQ = LQ.round().clip(0, 255).astype(np.uint8)
    print('<<== stage1_process')
    return LQ, gr.update(visible=True)


def stage2_process(*args, **kwargs):
    try:
        return restore_in_Xmin(*args, **kwargs)
    except Exception as e:
        print("An error occurred during processing:", str(e))
        raise e


def restore_in_Xmin(
    noisy_image,
    rotation,
    denoise_image,
    prompt,
    a_prompt,
    n_prompt,
    num_samples,
    min_size,
    downscale,
    upscale,
    edm_steps,
    s_stage1,
    s_stage2,
    s_cfg,
    randomize_seed,
    seed,
    s_churn,
    s_noise,
    color_fix_type,
    diff_dtype,
    ae_dtype,
    gamma_correction,
    linear_CFG,
    linear_s_stage2,
    spt_linear_CFG,
    spt_linear_s_stage2,
    model_select,
    output_format,
    allocation
):
    print("Starting restoration process...")
    input_format = re.sub(r"^.*\.([^\.]+)$", r"\1", noisy_image)

    if input_format not in ['png', 'webp', 'jpg', 'jpeg', 'gif', 'bmp', 'heic']:
        gr.Warning('Invalid image format. Please first convert into *.png, *.webp, *.jpg, *.jpeg, *.gif, *.bmp or *.heic.')
        return None, gr.update(value="Invalid image format.", visible=True), gr.update(visible=True)

    if output_format == "input":
        if noisy_image is None:
            output_format = "png"
        else:
            output_format = input_format
    print("Final output_format:", output_format)

    if prompt is None:
        prompt = ""

    if a_prompt is None:
        a_prompt = ""

    if n_prompt is None:
        n_prompt = ""

    if prompt != "" and a_prompt != "":
        a_prompt = prompt + ", " + a_prompt
    else:
        a_prompt = prompt + a_prompt
    print("Final prompt:", a_prompt)

    denoise_image = np.array(Image.open(noisy_image if denoise_image is None else denoise_image))

    if rotation == 90:
        denoise_image = np.array(list(zip(*denoise_image[::-1])))
    elif rotation == 180:
        denoise_image = np.array(list(zip(*denoise_image[::-1])))
        denoise_image = np.array(list(zip(*denoise_image[::-1])))
    elif rotation == -90:
        denoise_image = np.array(list(zip(*denoise_image))[::-1])

    if 1 < downscale:
        input_height, input_width, input_channel = denoise_image.shape
        denoise_image = np.array(Image.fromarray(denoise_image).resize((input_width // downscale, input_height // downscale), Image.LANCZOS))

    denoise_image = HWC3(denoise_image)

    if torch.cuda.device_count() == 0:
        gr.Warning('Set this space to GPU config to make it work.')
        return denoise_image, gr.update(value="No GPU available.", visible=True), gr.update(visible=True)

    if model_select != model.current_model:
        print('Loading model:', model_select)
        if model_select == 'v0-Q':
            model.load_state_dict(ckpt_Q, strict=False)
        elif model_select == 'v0-F':
            model.load_state_dict(ckpt_F, strict=False)
        model.current_model = model_select

    model.ae_dtype = convert_dtype(ae_dtype)
    model.model.dtype = convert_dtype(diff_dtype)

    # Allocation
    if allocation == 1:
        return restore_in_1min(
            noisy_image, denoise_image, a_prompt, n_prompt, num_samples, min_size, upscale, edm_steps, s_stage1,
            s_stage2, s_cfg, seed, s_churn, s_noise, color_fix_type, linear_CFG, linear_s_stage2, spt_linear_CFG,
            spt_linear_s_stage2, output_format
        )
    # 他のallocation条件は省略

    # デフォルトの処理
    return restore_in_1min(
        noisy_image, denoise_image, a_prompt, n_prompt, num_samples, min_size, upscale, edm_steps, s_stage1,
        s_stage2, s_cfg, seed, s_churn, s_noise, color_fix_type, linear_CFG, linear_s_stage2, spt_linear_CFG,
        spt_linear_s_stage2, output_format
    )


@spaces.GPU(duration=89)
def restore_in_1min(*args, **kwargs):
    return restore_on_gpu(*args, **kwargs)


def restore_on_gpu(
    noisy_image,
    input_image,
    a_prompt,
    n_prompt,
    num_samples,
    min_size,
    upscale,
    edm_steps,
    s_stage1,
    s_stage2,
    s_cfg,
    seed,
    s_churn,
    s_noise,
    color_fix_type,
    linear_CFG,
    linear_s_stage2,
    spt_linear_CFG,
    spt_linear_s_stage2,
    output_format
):
    start = time.time()
    print('Starting GPU restoration...')

    torch.cuda.set_device(SUPIR_device)

    with torch.no_grad():
        input_image = upscale_image(input_image, upscale, unit_resolution=32, min_size=min_size)
        LQ = np.array(input_image) / 255.0
        #LQ = np.power(LQ, gamma_correction)
        LQ = np.power(LQ, float(gamma_correction) if isinstance(gamma_correction, (int, float)) else gamma_correction.value)

        LQ *= 255.0
        LQ = LQ.round().clip(0, 255).astype(np.uint8)
        LQ = LQ / 255 * 2 - 1
        LQ = torch.tensor(LQ, dtype=torch.float32).permute(2, 0, 1).unsqueeze(0).to(SUPIR_device)[:, :3, :, :]
        captions = ['']

        samples = model.batchify_sample(
            LQ, captions, num_steps=edm_steps, restoration_scale=s_stage1, s_churn=s_churn,
            s_noise=s_noise, cfg_scale=s_cfg, control_scale=s_stage2, seed=seed,
            num_samples=num_samples, p_p=a_prompt, n_p=n_prompt, color_fix_type=color_fix_type,
            use_linear_CFG=linear_CFG, use_linear_control_scale=linear_s_stage2,
            cfg_scale_start=spt_linear_CFG, control_scale_start=spt_linear_s_stage2
        )

        x_samples = (einops.rearrange(samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().round().clip(
            0, 255).astype(np.uint8)
        results = [x_samples[i] for i in range(num_samples)]
    torch.cuda.empty_cache()

    # 結果の処理
    result_image = results[0]
    result_pil = Image.fromarray(result_image)

    end = time.time()
    elapsed_time = end - start
    information = f"Processing completed in {elapsed_time:.2f} seconds."

    print(information)
    print('GPU restoration completed.')

    return result_pil, gr.update(value=information, visible=True), gr.update(visible=True)


def load_and_reset(param_setting):
    print('load_and_reset ==>>')
    if torch.cuda.device_count() == 0:
        gr.Warning('Set this space to GPU config to make it work.')
        return None, None, None, None, None, None, None, None, None, None, None, None, None, None
    edm_steps = default_setting.edm_steps
    s_stage2 = 1.0
    s_stage1 = -1.0
    s_churn = 5
    s_noise = 1.003
    a_prompt = 'Cinematic, High Contrast, highly detailed, taken using a Canon EOS R camera, hyper detailed photo - ' \
               'realistic maximum detail, 32k, Color Grading, ultra HD, extreme meticulous detailing, skin pore ' \
               'detailing, hyper sharpness, perfect without deformations.'
    n_prompt = 'painting, oil painting, illustration, drawing, art, sketch, anime, cartoon, CG Style, ' \
               '3D render, unreal engine, blurring, dirty, messy, worst quality, low quality, frames, watermark, ' \
               'signature, jpeg artifacts, deformed, lowres, over-smooth'
    color_fix_type = 'Wavelet'
    spt_linear_s_stage2 = 0.0
    linear_s_stage2 = False
    linear_CFG = True
    if param_setting == "Quality":
        s_cfg = default_setting.s_cfg_Quality
        spt_linear_CFG = default_setting.spt_linear_CFG_Quality
        model_select = "v0-Q"
    elif param_setting == "Fidelity":
        s_cfg = default_setting.s_cfg_Fidelity
        spt_linear_CFG = default_setting.spt_linear_CFG_Fidelity
        model_select = "v0-F"
    else:
        raise NotImplementedError
    gr.Info('The parameters are reset.')
    print('<<== load_and_reset')
    return edm_steps, s_cfg, s_stage2, s_stage1, s_churn, s_noise, a_prompt, n_prompt, color_fix_type, linear_CFG, \
        linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select


title_html = """
    <h1><center>SUPIR</center></h1>
    <big><center>Upscale your images up to x10 freely, without account, without watermark and download it</center></big>
    <center><big><big>🤸<big><big><big><big><big><big>🤸</big></big></big></big></big></big></big></big></center>
    
    <p>This is an online demo of SUPIR, a practicing model scaling for photo-realistic image restoration.
    The content added by SUPIR is <b><u>imagination, not real-world information</u></b>.
    SUPIR is for beauty and illustration only.
    Most of the processes last few minutes.
    If you want to upscale AI-generated images, be noticed that <i>PixArt Sigma</i> space can directly generate 5984x5984 images.
    Due to Gradio issues, the generated image is slightly less saturated than the original.
    Please leave a <a href="https://huggingface.co/spaces/Fabrice-TIERCELIN/SUPIR/discussions/new">message in discussion</a> if you encounter issues.
    You can also use <a href="https://huggingface.co/spaces/gokaygokay/AuraSR">AuraSR</a> to upscale x4.
    
    <p><center><a href="https://arxiv.org/abs/2401.13627">Paper</a> &emsp; <a href="http://supir.xpixel.group/">Project Page</a> &emsp; <a href="https://huggingface.co/blog/MonsterMMORPG/supir-sota-image-upscale-better-than-magnific-ai">Local Install Guide</a></center></p>
    <p><center><a style="display:inline-block" href='https://github.com/Fanghua-Yu/SUPIR'><img alt="GitHub Repo stars" src="https://img.shields.io/github/stars/Fanghua-Yu/SUPIR?style=social"></a></center></p>
    """


claim_md = """
## **Piracy**
The images are not stored but the logs are saved during a month.
## **How to get SUPIR**
You can get SUPIR on HuggingFace by [duplicating this space](https://huggingface.co/spaces/Fabrice-TIERCELIN/SUPIR?duplicate=true) and set GPU.
You can also install SUPIR on your computer following [this tutorial](https://huggingface.co/blog/MonsterMMORPG/supir-sota-image-upscale-better-than-magnific-ai).
You can install _Pinokio_ on your computer and then install _SUPIR_ into it. It should be quite easy if you have an Nvidia GPU.
## **Terms of use**
By using this service, users are required to agree to the following terms: The service is a research preview intended for non-commercial use only. It only provides limited safety measures and may generate offensive content. It must not be used for any illegal, harmful, violent, racist, or sexual purposes. The service may collect user dialogue data for future research. Please submit a feedback to us if you get any inappropriate answer! We will collect those to keep improving our models. For an optimal experience, please use desktop computers for this demo, as mobile devices may compromise its quality.
## **License**
The service is a research preview intended for non-commercial use only, subject to the model [License](https://github.com/Fanghua-Yu/SUPIR) of SUPIR.
"""

# Gradio interface
with gr.Blocks() as interface:
    if torch.cuda.device_count() == 0:
        with gr.Row():
            gr.HTML("""
    <p style="background-color: red;"><big><big><big><b>⚠️To use SUPIR, <a href="https://huggingface.co/spaces/Fabrice-TIERCELIN/SUPIR?duplicate=true">duplicate this space</a> and set a GPU with 30 GB VRAM.</b>
    
    You can't use SUPIR directly here because this space runs on a CPU, which is not enough for SUPIR. Please provide <a href="https://huggingface.co/spaces/Fabrice-TIERCELIN/SUPIR/discussions/new">feedback</a> if you have issues.
    </big></big></big></p>
    """)
    gr.HTML(title_html)

    input_image = gr.Image(label="Input (*.png, *.webp, *.jpeg, *.jpg, *.gif, *.bmp, *.heic)", show_label=True, type="filepath", height=600, elem_id="image-input")
    rotation = gr.Radio([["No rotation", 0], ["⤵ Rotate +90°", 90], ["↩ Return 180°", 180], ["⤴ Rotate -90°", -90]], label="Orientation correction", info="Will apply the following rotation before restoring the image; the AI needs a good orientation to understand the content", value=0, interactive=True, visible=False)
    with gr.Group():
        prompt = gr.Textbox(label="Image description", info="Help the AI understand what the image represents; describe as much as possible, especially the details we can't see on the original image; you can write in any language", value="", placeholder="A 33 years old man, walking, in the street, Santiago, morning, Summer, photorealistic", lines=3)
        prompt_hint = gr.HTML("You can use a <a href='https://huggingface.co/spaces/MaziyarPanahi/llava-llama-3-8b'>LlaVa space</a> to auto-generate the description of your image.")
        upscale = gr.Radio([["x1", 1], ["x2", 2], ["x3", 3], ["x4", 4], ["x5", 5], ["x6", 6], ["x7", 7], ["x8", 8], ["x9", 9], ["x10", 10]], label="Upscale factor", info="Resolution x1 to x10", value=2, interactive=True)
        output_format = gr.Radio([["As input", "input"], ["*.png", "png"], ["*.webp", "webp"], ["*.jpeg", "jpeg"], ["*.gif", "gif"], ["*.bmp", "bmp"]], label="Image format for result", info="File extension", value="input", interactive=True)
        allocation = gr.Radio([["1 min", 1], ["2 min", 2], ["3 min", 3], ["4 min", 4], ["5 min", 5]], label="GPU allocation time", info="lower=May abort run, higher=Quota penalty for next runs", value=1, interactive=True)

    with gr.Accordion("Pre-denoising (optional)", open=False):
        gamma_correction = gr.Slider(label="Gamma Correction", info="lower=lighter, higher=darker", minimum=0.1, maximum=2.0, value=1.0, step=0.1)
        denoise_button = gr.Button(value="Pre-denoise")
        denoise_image = gr.Image(label="Denoised image", show_label=True, type="filepath", sources=[], interactive=False, height=600, elem_id="image-s1")
        denoise_information = gr.HTML(value="If present, the denoised image will be used for the restoration instead of the input image.", visible=False)

    with gr.Accordion("Advanced options", open=False):
        a_prompt = gr.Textbox(label="Additional image description",
                              info="Completes the main image description",
                              value='Cinematic, High Contrast, highly detailed, taken using a Canon EOS R camera, hyper detailed photo - realistic maximum detail, 32k, Color Grading, ultra HD, extreme meticulous detailing, skin pore detailing, hyper sharpness, perfect without deformations.',
                              lines=3)
        n_prompt = gr.Textbox(label="Negative image description",
                              info="Disambiguate by listing what the image does NOT represent",
                              value='painting, oil painting, illustration, drawing, art, sketch, anime, cartoon, CG Style, 3D render, unreal engine, blurring, aliasing, unsharp, weird textures, ugly, dirty, messy, worst quality, low quality, frames, watermark, signature, jpeg artifacts, deformed, lowres, over-smooth',
                              lines=3)
        edm_steps = gr.Slider(label="Steps", info="lower=faster, higher=more details", minimum=1, maximum=200, value=default_setting.edm_steps if torch.cuda.device_count() > 0 else 1, step=1)
        num_samples = gr.Slider(label="Num Samples", info="Number of generated results", minimum=1, maximum=1, value=1, step=1)
        min_size = gr.Slider(label="Minimum size", info="Minimum height, minimum width of the result", minimum=32, maximum=4096, value=1024, step=32)
        downscale = gr.Radio([["/1", 1], ["/2", 2], ["/3", 3], ["/4", 4], ["/5", 5], ["/6", 6], ["/7", 7], ["/8", 8], ["/9", 9], ["/10", 10]], label="Pre-downscale factor", info="Reducing blurred image reduce the process time", value=1, interactive=True)
        with gr.Row():
            with gr.Column():
                model_select = gr.Radio([["💃 Quality (v0-Q)", "v0-Q"], ["🎯 Fidelity (v0-F)", "v0-F"]], label="Model Selection", info="Pretrained model", value="v0-Q",
                                        interactive=True)
            with gr.Column():
                color_fix_type = gr.Radio([["None", "None"], ["AdaIn (improve as a photo)", "AdaIn"], ["Wavelet (for JPEG artifacts)", "Wavelet"]], label="Color-Fix Type", info="AdaIn=Improve following a style, Wavelet=For JPEG artifacts", value="AdaIn",
                                          interactive=True)
        s_cfg = gr.Slider(label="Text Guidance Scale", info="lower=follow the image, higher=follow the prompt", minimum=1.0, maximum=15.0,
                          value=default_setting.s_cfg_Quality if torch.cuda.device_count() > 0 else 1.0, step=0.1)
        s_stage2 = gr.Slider(label="Restoring Guidance Strength", minimum=0.0, maximum=1.0, value=1.0, step=0.05)
        s_stage1 = gr.Slider(label="Pre-denoising Guidance Strength", minimum=-1.0, maximum=6.0, value=-1.0, step=1.0)
        s_churn = gr.Slider(label="S-Churn", minimum=0, maximum=40, value=5, step=1)
        s_noise = gr.Slider(label="S-Noise", minimum=1.0, maximum=1.1, value=1.003, step=0.001)
        with gr.Row():
            with gr.Column():
                linear_CFG = gr.Checkbox(label="Linear CFG", value=True)
                spt_linear_CFG = gr.Slider(label="CFG Start", minimum=1.0,
                                                maximum=9.0, value=default_setting.spt_linear_CFG_Quality if torch.cuda.device_count() > 0 else 1.0, step=0.5)
            with gr.Column():
                linear_s_stage2 = gr.Checkbox(label="Linear Restoring Guidance", value=False)
                spt_linear_s_stage2 = gr.Slider(label="Guidance Start", minimum=0.0,
                                                maximum=1.0, value=0.0, step=0.05)
            with gr.Column():
                diff_dtype = gr.Radio([["fp32 (precision)", "fp32"], ["fp16 (medium)", "fp16"], ["bf16 (speed)", "bf16"]], label="Diffusion Data Type", value="fp32",
                                      interactive=True)
            with gr.Column():
                ae_dtype = gr.Radio([["fp32 (precision)", "fp32"], ["bf16 (speed)", "bf16"]], label="Auto-Encoder Data Type", value="fp32",
                                    interactive=True)
        randomize_seed = gr.Checkbox(label="\U0001F3B2 Randomize seed", value=True, info="If checked, result is always different")
        seed = gr.Slider(label="Seed", minimum=0, maximum=max_64_bit_int, step=1, randomize=True)
        with gr.Group():
            param_setting = gr.Radio(["Quality", "Fidelity"], interactive=True, label="Presetting", value="Quality")
            restart_button = gr.Button(value="Apply presetting")

    with gr.Column():
        diffusion_button = gr.Button(value="🚀 Upscale/Restore", variant="primary", elem_id="process_button")
        reset_btn = gr.Button(value="🧹 Reinit page", variant="stop", elem_id="reset_button", visible=False)

        restore_information = gr.HTML(value="Restart the process to get another result.", visible=False)
        result_image = gr.Image(label='Result Image', show_label=True, interactive=False, elem_id='result_image')

    gr.Examples(
        examples=[
            # 例を適宜追加または削除
        ],
        run_on_click=True,
        fn=stage2_process,
        inputs=[
            input_image,
            rotation,
            denoise_image,
            prompt,
            a_prompt,
            n_prompt,
            num_samples,
            min_size,
            downscale,
            upscale,
            edm_steps,
            s_stage1,
            s_stage2,
            s_cfg,
            randomize_seed,
            seed,
            s_churn,
            s_noise,
            color_fix_type,
            diff_dtype,
            ae_dtype,
            gamma_correction,
            linear_CFG,
            linear_s_stage2,
            spt_linear_CFG,
            spt_linear_s_stage2,
            model_select,
            output_format,
            allocation
        ],
        outputs=[
            result_image,
            restore_information,
            reset_btn
        ],
        cache_examples=False,
    )

    with gr.Row():
        gr.Markdown(claim_md)

    input_image.upload(fn=check_upload, inputs=[
        input_image
    ], outputs=[
        rotation
    ], queue=False, show_progress=False)

    denoise_button.click(fn=check, inputs=[
        input_image
    ], outputs=[], queue=False, show_progress=False).success(fn=stage1_process, inputs=[
        input_image,
        gamma_correction,
        diff_dtype,
        ae_dtype
    ], outputs=[
        denoise_image,
        denoise_information
    ])

    diffusion_button.click(fn=update_seed, inputs=[
        randomize_seed,
        seed
    ], outputs=[
        seed
    ], queue=False, show_progress=False).then(fn=check, inputs=[
        input_image
    ], outputs=[], queue=False, show_progress=False).success(fn=stage2_process, inputs=[
        input_image,
        rotation,
        denoise_image,
        prompt,
        a_prompt,
        n_prompt,
        num_samples,
        min_size,
        downscale,
        upscale,
        edm_steps,
        s_stage1,
        s_stage2,
        s_cfg,
        randomize_seed,
        seed,
        s_churn,
        s_noise,
        color_fix_type,
        diff_dtype,
        ae_dtype,
        gamma_correction,
        linear_CFG,
        linear_s_stage2,
        spt_linear_CFG,
        spt_linear_s_stage2,
        model_select,
        output_format,
        allocation
    ], outputs=[
        result_image,
        restore_information,
        reset_btn
    ])

    restart_button.click(fn=load_and_reset, inputs=[
        param_setting
    ], outputs=[
        edm_steps,
        s_cfg,
        s_stage2,
        s_stage1,
        s_churn,
        s_noise,
        a_prompt,
        n_prompt,
        color_fix_type,
        linear_CFG,
        linear_s_stage2,
        spt_linear_CFG,
        spt_linear_s_stage2,
        model_select
    ])

    reset_btn.click(fn=reset, inputs=[], outputs=[
        input_image,
        rotation,
        denoise_image,
        prompt,
        a_prompt,
        n_prompt,
        num_samples,
        min_size,
        downscale,
        upscale,
        edm_steps,
        s_stage1,
        s_stage2,
        s_cfg,
        randomize_seed,
        seed,
        s_churn,
        s_noise,
        color_fix_type,
        diff_dtype,
        ae_dtype,
        gamma_correction,
        linear_CFG,
        linear_s_stage2,
        spt_linear_CFG,
        spt_linear_s_stage2,
        model_select,
        output_format,
        allocation
    ], queue=False, show_progress=False)

    interface.queue(10).launch(show_error=True)