File size: 27,900 Bytes
fae2f45 4b4cde1 fae2f45 4b4cde1 c4b24c1 fae2f45 b080b67 fae2f45 b080b67 4b4cde1 fae2f45 13c074c fae2f45 de3f501 3dfaeda de3f501 e864180 de3f501 3dfaeda de3f501 4b4cde1 b080b67 4b4cde1 fae2f45 b080b67 4b4cde1 b080b67 4b4cde1 b080b67 4b4cde1 fae2f45 b080b67 4b4cde1 fae2f45 b080b67 9c19d71 4b4cde1 fae2f45 4b4cde1 70f1ccf 4b4cde1 b080b67 9184ef3 4b4cde1 b080b67 4b4cde1 b080b67 4b4cde1 b080b67 4b4cde1 fc23e64 4b4cde1 fae2f45 4b4cde1 b080b67 4b4cde1 b080b67 4b4cde1 fc23e64 4b4cde1 fc23e64 4b4cde1 fc23e64 4b4cde1 b080b67 fae2f45 b080b67 fae2f45 4b4cde1 fae2f45 4b4cde1 b080b67 4b4cde1 fc23e64 4b4cde1 b080b67 b362322 b080b67 4b4cde1 b362322 b080b67 4b4cde1 b080b67 4b4cde1 b080b67 4b4cde1 fae2f45 f346f96 fc23e64 fae2f45 4b4cde1 fae2f45 b080b67 fae2f45 4b4cde1 fae2f45 b080b67 fae2f45 4b4cde1 b080b67 4b4cde1 b080b67 4b4cde1 fae2f45 4b4cde1 fae2f45 4b4cde1 fae2f45 4b4cde1 fae2f45 4b4cde1 fae2f45 4b4cde1 fae2f45 4b4cde1 fae2f45 4b4cde1 b080b67 4b4cde1 fae2f45 fc23e64 fae2f45 4b4cde1 fae2f45 4b4cde1 b080b67 4b4cde1 b080b67 6a7cbe5 4b4cde1 b080b67 4b4cde1 b080b67 4b4cde1 b080b67 4b4cde1 b080b67 4b4cde1 b080b67 4b4cde1 b080b67 4b4cde1 b080b67 4b4cde1 b080b67 4b4cde1 b080b67 4b4cde1 b080b67 4b4cde1 b080b67 fc23e64 811b1fa 4b4cde1 b080b67 4b4cde1 b080b67 4b4cde1 b080b67 4b4cde1 811b1fa fae2f45 b080b67 4b4cde1 b080b67 4b4cde1 b080b67 4b4cde1 b080b67 4b4cde1 b080b67 4b4cde1 b080b67 4b4cde1 b080b67 4b4cde1 b080b67 4b4cde1 b080b67 4b4cde1 b080b67 4b4cde1 b080b67 4b4cde1 b080b67 4b4cde1 b080b67 4b4cde1 b080b67 fc23e64 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 |
import os
import gradio as gr
import argparse
import numpy as np
import torch
import einops
import copy
import math
import time
import random
import spaces
import re
import uuid
from PIL import Image
from SUPIR.util import HWC3, upscale_image, fix_resize, convert_dtype, create_SUPIR_model, load_QF_ckpt
from huggingface_hub import hf_hub_download
from pillow_heif import register_heif_opener
register_heif_opener()
max_64_bit_int = np.iinfo(np.int32).max
from llava.llava_agent import LLavaAgent
from CKPT_PTH import LLAVA_MODEL_PATH
parser = argparse.ArgumentParser()
parser.add_argument("--opt", type=str, default='options/SUPIR_v0.yaml')
parser.add_argument("--ip", type=str, default='127.0.0.1')
parser.add_argument("--port", type=int, default='6688')
parser.add_argument("--no_llava", action='store_true', default=True) # False
parser.add_argument("--use_image_slider", action='store_true', default=False) # False
parser.add_argument("--log_history", action='store_true', default=False)
parser.add_argument("--loading_half_params", action='store_true', default=True) # False
parser.add_argument("--use_tile_vae", action='store_true', default=False) # False
parser.add_argument("--encoder_tile_size", type=int, default=512)
parser.add_argument("--decoder_tile_size", type=int, default=64)
parser.add_argument("--load_8bit_llava", action='store_true', default=True)
args = parser.parse_args()
use_llava = not args.no_llava
if torch.cuda.device_count() >= 2:
SUPIR_device = 'cuda:0'
LLaVA_device = 'cuda:1'
# Load SUPIR
model, default_setting = create_SUPIR_model(args.opt, SUPIR_sign='Q', load_default_setting=True)
if args.loading_half_params:
model = model.half()
if args.use_tile_vae:
model.init_tile_vae(encoder_tile_size=args.encoder_tile_size, decoder_tile_size=args.decoder_tile_size)
model = model.to(SUPIR_device)
model.first_stage_model.denoise_encoder_s1 = copy.deepcopy(model.first_stage_model.denoise_encoder)
model.current_model = 'v0-Q'
ckpt_Q, ckpt_F = load_QF_ckpt(args.opt)
elif torch.cuda.device_count() == 1:
SUPIR_device = 'cuda:0'
LLaVA_device = 'cuda:0'
# Load SUPIR
model, default_setting = create_SUPIR_model(args.opt, SUPIR_sign='Q', load_default_setting=True)
if args.loading_half_params:
model = model.half()
if args.use_tile_vae:
model.init_tile_vae(encoder_tile_size=args.encoder_tile_size, decoder_tile_size=args.decoder_tile_size)
model = model.to(SUPIR_device)
model.first_stage_model.denoise_encoder_s1 = copy.deepcopy(model.first_stage_model.denoise_encoder)
model.current_model = 'v0-Q'
ckpt_Q, ckpt_F = load_QF_ckpt(args.opt)
else:
raise ValueError('Currently support CUDA only.')
# load LLaVA
if use_llava:
llava_agent = LLavaAgent(LLAVA_MODEL_PATH, device=LLaVA_device, load_8bit=args.load_8bit_llava, load_4bit=False)
else:
llava_agent = None
def check_upload(input_image):
if input_image is None:
raise gr.Error("Please provide an image to restore.")
return gr.update(visible=True)
def update_seed(is_randomize_seed, seed):
if is_randomize_seed:
return random.randint(0, max_64_bit_int)
return seed
def reset():
return [
None,
0,
None,
None,
"Cinematic, High Contrast, highly detailed, taken using a Canon EOS R camera, hyper detailed photo - realistic maximum detail, 32k, Color Grading, ultra HD, extreme meticulous detailing, skin pore detailing, hyper sharpness, perfect without deformations.",
"painting, oil painting, illustration, drawing, art, sketch, anime, cartoon, CG Style, 3D render, unreal engine, blurring, aliasing, unsharp, weird textures, ugly, dirty, messy, worst quality, low quality, frames, watermark, signature, jpeg artifacts, deformed, lowres, over-smooth",
1,
1024,
1,
2,
50,
-1.0,
1.0,
default_setting.s_cfg_Quality if torch.cuda.device_count() > 0 else 1.0,
True,
random.randint(0, max_64_bit_int),
5,
1.003,
"Wavelet",
"fp32",
"fp32",
1.0,
True,
False,
default_setting.spt_linear_CFG_Quality if torch.cuda.device_count() > 0 else 1.0,
0.0,
"v0-Q",
"input",
6
]
def check(input_image):
if input_image is None:
raise gr.Error("Please provide an image to restore.")
@spaces.GPU(duration=20)
def stage1_process(
input_image,
gamma_correction,
diff_dtype,
ae_dtype
):
print('stage1_process ==>>')
if torch.cuda.device_count() == 0:
gr.Warning('Set this space to GPU config to make it work.')
return None, None
torch.cuda.set_device(SUPIR_device)
LQ = HWC3(np.array(Image.open(input_image)))
LQ = fix_resize(LQ, 512)
# stage1
LQ = np.array(LQ) / 255 * 2 - 1
LQ = torch.tensor(LQ, dtype=torch.float32).permute(2, 0, 1).unsqueeze(0).to(SUPIR_device)[:, :3, :, :]
model.ae_dtype = convert_dtype(ae_dtype)
model.model.dtype = convert_dtype(diff_dtype)
LQ = model.batchify_denoise(LQ, is_stage1=True)
LQ = (LQ[0].permute(1, 2, 0) * 127.5 + 127.5).cpu().numpy().round().clip(0, 255).astype(np.uint8)
# gamma correction
LQ = LQ / 255.0
#LQ = np.power(LQ, gamma_correction)
LQ = np.power(LQ, float(gamma_correction) if isinstance(gamma_correction, (int, float)) else gamma_correction.value)
LQ *= 255.0
LQ = LQ.round().clip(0, 255).astype(np.uint8)
print('<<== stage1_process')
return LQ, gr.update(visible=True)
def stage2_process(*args, **kwargs):
try:
return restore_in_Xmin(*args, **kwargs)
except Exception as e:
print("An error occurred during processing:", str(e))
raise e
def restore_in_Xmin(
noisy_image,
rotation,
denoise_image,
prompt,
a_prompt,
n_prompt,
num_samples,
min_size,
downscale,
upscale,
edm_steps,
s_stage1,
s_stage2,
s_cfg,
randomize_seed,
seed,
s_churn,
s_noise,
color_fix_type,
diff_dtype,
ae_dtype,
gamma_correction,
linear_CFG,
linear_s_stage2,
spt_linear_CFG,
spt_linear_s_stage2,
model_select,
output_format,
allocation
):
print("Starting restoration process...")
input_format = re.sub(r"^.*\.([^\.]+)$", r"\1", noisy_image)
if input_format not in ['png', 'webp', 'jpg', 'jpeg', 'gif', 'bmp', 'heic']:
gr.Warning('Invalid image format. Please first convert into *.png, *.webp, *.jpg, *.jpeg, *.gif, *.bmp or *.heic.')
return None, gr.update(value="Invalid image format.", visible=True), gr.update(visible=True)
if output_format == "input":
if noisy_image is None:
output_format = "png"
else:
output_format = input_format
print("Final output_format:", output_format)
if prompt is None:
prompt = ""
if a_prompt is None:
a_prompt = ""
if n_prompt is None:
n_prompt = ""
if prompt != "" and a_prompt != "":
a_prompt = prompt + ", " + a_prompt
else:
a_prompt = prompt + a_prompt
print("Final prompt:", a_prompt)
denoise_image = np.array(Image.open(noisy_image if denoise_image is None else denoise_image))
if rotation == 90:
denoise_image = np.array(list(zip(*denoise_image[::-1])))
elif rotation == 180:
denoise_image = np.array(list(zip(*denoise_image[::-1])))
denoise_image = np.array(list(zip(*denoise_image[::-1])))
elif rotation == -90:
denoise_image = np.array(list(zip(*denoise_image))[::-1])
if 1 < downscale:
input_height, input_width, input_channel = denoise_image.shape
denoise_image = np.array(Image.fromarray(denoise_image).resize((input_width // downscale, input_height // downscale), Image.LANCZOS))
denoise_image = HWC3(denoise_image)
if torch.cuda.device_count() == 0:
gr.Warning('Set this space to GPU config to make it work.')
return denoise_image, gr.update(value="No GPU available.", visible=True), gr.update(visible=True)
if model_select != model.current_model:
print('Loading model:', model_select)
if model_select == 'v0-Q':
model.load_state_dict(ckpt_Q, strict=False)
elif model_select == 'v0-F':
model.load_state_dict(ckpt_F, strict=False)
model.current_model = model_select
model.ae_dtype = convert_dtype(ae_dtype)
model.model.dtype = convert_dtype(diff_dtype)
# Allocation
if allocation == 1:
return restore_in_1min(
noisy_image, denoise_image, a_prompt, n_prompt, num_samples, min_size, upscale, edm_steps, s_stage1,
s_stage2, s_cfg, seed, s_churn, s_noise, color_fix_type, linear_CFG, linear_s_stage2, spt_linear_CFG,
spt_linear_s_stage2, output_format
)
# 他のallocation条件は省略
# デフォルトの処理
return restore_in_1min(
noisy_image, denoise_image, a_prompt, n_prompt, num_samples, min_size, upscale, edm_steps, s_stage1,
s_stage2, s_cfg, seed, s_churn, s_noise, color_fix_type, linear_CFG, linear_s_stage2, spt_linear_CFG,
spt_linear_s_stage2, output_format
)
@spaces.GPU(duration=89)
def restore_in_1min(*args, **kwargs):
return restore_on_gpu(*args, **kwargs)
def restore_on_gpu(
noisy_image,
input_image,
a_prompt,
n_prompt,
num_samples,
min_size,
upscale,
edm_steps,
s_stage1,
s_stage2,
s_cfg,
seed,
s_churn,
s_noise,
color_fix_type,
linear_CFG,
linear_s_stage2,
spt_linear_CFG,
spt_linear_s_stage2,
output_format
):
start = time.time()
print('Starting GPU restoration...')
torch.cuda.set_device(SUPIR_device)
with torch.no_grad():
input_image = upscale_image(input_image, upscale, unit_resolution=32, min_size=min_size)
LQ = np.array(input_image) / 255.0
#LQ = np.power(LQ, gamma_correction)
LQ = np.power(LQ, float(gamma_correction) if isinstance(gamma_correction, (int, float)) else gamma_correction.value)
LQ *= 255.0
LQ = LQ.round().clip(0, 255).astype(np.uint8)
LQ = LQ / 255 * 2 - 1
LQ = torch.tensor(LQ, dtype=torch.float32).permute(2, 0, 1).unsqueeze(0).to(SUPIR_device)[:, :3, :, :]
captions = ['']
samples = model.batchify_sample(
LQ, captions, num_steps=edm_steps, restoration_scale=s_stage1, s_churn=s_churn,
s_noise=s_noise, cfg_scale=s_cfg, control_scale=s_stage2, seed=seed,
num_samples=num_samples, p_p=a_prompt, n_p=n_prompt, color_fix_type=color_fix_type,
use_linear_CFG=linear_CFG, use_linear_control_scale=linear_s_stage2,
cfg_scale_start=spt_linear_CFG, control_scale_start=spt_linear_s_stage2
)
x_samples = (einops.rearrange(samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().round().clip(
0, 255).astype(np.uint8)
results = [x_samples[i] for i in range(num_samples)]
torch.cuda.empty_cache()
# 結果の処理
result_image = results[0]
result_pil = Image.fromarray(result_image)
end = time.time()
elapsed_time = end - start
information = f"Processing completed in {elapsed_time:.2f} seconds."
print(information)
print('GPU restoration completed.')
return result_pil, gr.update(value=information, visible=True), gr.update(visible=True)
def load_and_reset(param_setting):
print('load_and_reset ==>>')
if torch.cuda.device_count() == 0:
gr.Warning('Set this space to GPU config to make it work.')
return None, None, None, None, None, None, None, None, None, None, None, None, None, None
edm_steps = default_setting.edm_steps
s_stage2 = 1.0
s_stage1 = -1.0
s_churn = 5
s_noise = 1.003
a_prompt = 'Cinematic, High Contrast, highly detailed, taken using a Canon EOS R camera, hyper detailed photo - ' \
'realistic maximum detail, 32k, Color Grading, ultra HD, extreme meticulous detailing, skin pore ' \
'detailing, hyper sharpness, perfect without deformations.'
n_prompt = 'painting, oil painting, illustration, drawing, art, sketch, anime, cartoon, CG Style, ' \
'3D render, unreal engine, blurring, dirty, messy, worst quality, low quality, frames, watermark, ' \
'signature, jpeg artifacts, deformed, lowres, over-smooth'
color_fix_type = 'Wavelet'
spt_linear_s_stage2 = 0.0
linear_s_stage2 = False
linear_CFG = True
if param_setting == "Quality":
s_cfg = default_setting.s_cfg_Quality
spt_linear_CFG = default_setting.spt_linear_CFG_Quality
model_select = "v0-Q"
elif param_setting == "Fidelity":
s_cfg = default_setting.s_cfg_Fidelity
spt_linear_CFG = default_setting.spt_linear_CFG_Fidelity
model_select = "v0-F"
else:
raise NotImplementedError
gr.Info('The parameters are reset.')
print('<<== load_and_reset')
return edm_steps, s_cfg, s_stage2, s_stage1, s_churn, s_noise, a_prompt, n_prompt, color_fix_type, linear_CFG, \
linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select
title_html = """
<h1><center>SUPIR</center></h1>
<big><center>Upscale your images up to x10 freely, without account, without watermark and download it</center></big>
<center><big><big>🤸<big><big><big><big><big><big>🤸</big></big></big></big></big></big></big></big></center>
<p>This is an online demo of SUPIR, a practicing model scaling for photo-realistic image restoration.
The content added by SUPIR is <b><u>imagination, not real-world information</u></b>.
SUPIR is for beauty and illustration only.
Most of the processes last few minutes.
If you want to upscale AI-generated images, be noticed that <i>PixArt Sigma</i> space can directly generate 5984x5984 images.
Due to Gradio issues, the generated image is slightly less saturated than the original.
Please leave a <a href="https://huggingface.co/spaces/Fabrice-TIERCELIN/SUPIR/discussions/new">message in discussion</a> if you encounter issues.
You can also use <a href="https://huggingface.co/spaces/gokaygokay/AuraSR">AuraSR</a> to upscale x4.
<p><center><a href="https://arxiv.org/abs/2401.13627">Paper</a>   <a href="http://supir.xpixel.group/">Project Page</a>   <a href="https://huggingface.co/blog/MonsterMMORPG/supir-sota-image-upscale-better-than-magnific-ai">Local Install Guide</a></center></p>
<p><center><a style="display:inline-block" href='https://github.com/Fanghua-Yu/SUPIR'><img alt="GitHub Repo stars" src="https://img.shields.io/github/stars/Fanghua-Yu/SUPIR?style=social"></a></center></p>
"""
claim_md = """
## **Piracy**
The images are not stored but the logs are saved during a month.
## **How to get SUPIR**
You can get SUPIR on HuggingFace by [duplicating this space](https://huggingface.co/spaces/Fabrice-TIERCELIN/SUPIR?duplicate=true) and set GPU.
You can also install SUPIR on your computer following [this tutorial](https://huggingface.co/blog/MonsterMMORPG/supir-sota-image-upscale-better-than-magnific-ai).
You can install _Pinokio_ on your computer and then install _SUPIR_ into it. It should be quite easy if you have an Nvidia GPU.
## **Terms of use**
By using this service, users are required to agree to the following terms: The service is a research preview intended for non-commercial use only. It only provides limited safety measures and may generate offensive content. It must not be used for any illegal, harmful, violent, racist, or sexual purposes. The service may collect user dialogue data for future research. Please submit a feedback to us if you get any inappropriate answer! We will collect those to keep improving our models. For an optimal experience, please use desktop computers for this demo, as mobile devices may compromise its quality.
## **License**
The service is a research preview intended for non-commercial use only, subject to the model [License](https://github.com/Fanghua-Yu/SUPIR) of SUPIR.
"""
# Gradio interface
with gr.Blocks() as interface:
if torch.cuda.device_count() == 0:
with gr.Row():
gr.HTML("""
<p style="background-color: red;"><big><big><big><b>⚠️To use SUPIR, <a href="https://huggingface.co/spaces/Fabrice-TIERCELIN/SUPIR?duplicate=true">duplicate this space</a> and set a GPU with 30 GB VRAM.</b>
You can't use SUPIR directly here because this space runs on a CPU, which is not enough for SUPIR. Please provide <a href="https://huggingface.co/spaces/Fabrice-TIERCELIN/SUPIR/discussions/new">feedback</a> if you have issues.
</big></big></big></p>
""")
gr.HTML(title_html)
input_image = gr.Image(label="Input (*.png, *.webp, *.jpeg, *.jpg, *.gif, *.bmp, *.heic)", show_label=True, type="filepath", height=600, elem_id="image-input")
rotation = gr.Radio([["No rotation", 0], ["⤵ Rotate +90°", 90], ["↩ Return 180°", 180], ["⤴ Rotate -90°", -90]], label="Orientation correction", info="Will apply the following rotation before restoring the image; the AI needs a good orientation to understand the content", value=0, interactive=True, visible=False)
with gr.Group():
prompt = gr.Textbox(label="Image description", info="Help the AI understand what the image represents; describe as much as possible, especially the details we can't see on the original image; you can write in any language", value="", placeholder="A 33 years old man, walking, in the street, Santiago, morning, Summer, photorealistic", lines=3)
prompt_hint = gr.HTML("You can use a <a href='https://huggingface.co/spaces/MaziyarPanahi/llava-llama-3-8b'>LlaVa space</a> to auto-generate the description of your image.")
upscale = gr.Radio([["x1", 1], ["x2", 2], ["x3", 3], ["x4", 4], ["x5", 5], ["x6", 6], ["x7", 7], ["x8", 8], ["x9", 9], ["x10", 10]], label="Upscale factor", info="Resolution x1 to x10", value=2, interactive=True)
output_format = gr.Radio([["As input", "input"], ["*.png", "png"], ["*.webp", "webp"], ["*.jpeg", "jpeg"], ["*.gif", "gif"], ["*.bmp", "bmp"]], label="Image format for result", info="File extension", value="input", interactive=True)
allocation = gr.Radio([["1 min", 1], ["2 min", 2], ["3 min", 3], ["4 min", 4], ["5 min", 5]], label="GPU allocation time", info="lower=May abort run, higher=Quota penalty for next runs", value=1, interactive=True)
with gr.Accordion("Pre-denoising (optional)", open=False):
gamma_correction = gr.Slider(label="Gamma Correction", info="lower=lighter, higher=darker", minimum=0.1, maximum=2.0, value=1.0, step=0.1)
denoise_button = gr.Button(value="Pre-denoise")
denoise_image = gr.Image(label="Denoised image", show_label=True, type="filepath", sources=[], interactive=False, height=600, elem_id="image-s1")
denoise_information = gr.HTML(value="If present, the denoised image will be used for the restoration instead of the input image.", visible=False)
with gr.Accordion("Advanced options", open=False):
a_prompt = gr.Textbox(label="Additional image description",
info="Completes the main image description",
value='Cinematic, High Contrast, highly detailed, taken using a Canon EOS R camera, hyper detailed photo - realistic maximum detail, 32k, Color Grading, ultra HD, extreme meticulous detailing, skin pore detailing, hyper sharpness, perfect without deformations.',
lines=3)
n_prompt = gr.Textbox(label="Negative image description",
info="Disambiguate by listing what the image does NOT represent",
value='painting, oil painting, illustration, drawing, art, sketch, anime, cartoon, CG Style, 3D render, unreal engine, blurring, aliasing, unsharp, weird textures, ugly, dirty, messy, worst quality, low quality, frames, watermark, signature, jpeg artifacts, deformed, lowres, over-smooth',
lines=3)
edm_steps = gr.Slider(label="Steps", info="lower=faster, higher=more details", minimum=1, maximum=200, value=default_setting.edm_steps if torch.cuda.device_count() > 0 else 1, step=1)
num_samples = gr.Slider(label="Num Samples", info="Number of generated results", minimum=1, maximum=1, value=1, step=1)
min_size = gr.Slider(label="Minimum size", info="Minimum height, minimum width of the result", minimum=32, maximum=4096, value=1024, step=32)
downscale = gr.Radio([["/1", 1], ["/2", 2], ["/3", 3], ["/4", 4], ["/5", 5], ["/6", 6], ["/7", 7], ["/8", 8], ["/9", 9], ["/10", 10]], label="Pre-downscale factor", info="Reducing blurred image reduce the process time", value=1, interactive=True)
with gr.Row():
with gr.Column():
model_select = gr.Radio([["💃 Quality (v0-Q)", "v0-Q"], ["🎯 Fidelity (v0-F)", "v0-F"]], label="Model Selection", info="Pretrained model", value="v0-Q",
interactive=True)
with gr.Column():
color_fix_type = gr.Radio([["None", "None"], ["AdaIn (improve as a photo)", "AdaIn"], ["Wavelet (for JPEG artifacts)", "Wavelet"]], label="Color-Fix Type", info="AdaIn=Improve following a style, Wavelet=For JPEG artifacts", value="AdaIn",
interactive=True)
s_cfg = gr.Slider(label="Text Guidance Scale", info="lower=follow the image, higher=follow the prompt", minimum=1.0, maximum=15.0,
value=default_setting.s_cfg_Quality if torch.cuda.device_count() > 0 else 1.0, step=0.1)
s_stage2 = gr.Slider(label="Restoring Guidance Strength", minimum=0.0, maximum=1.0, value=1.0, step=0.05)
s_stage1 = gr.Slider(label="Pre-denoising Guidance Strength", minimum=-1.0, maximum=6.0, value=-1.0, step=1.0)
s_churn = gr.Slider(label="S-Churn", minimum=0, maximum=40, value=5, step=1)
s_noise = gr.Slider(label="S-Noise", minimum=1.0, maximum=1.1, value=1.003, step=0.001)
with gr.Row():
with gr.Column():
linear_CFG = gr.Checkbox(label="Linear CFG", value=True)
spt_linear_CFG = gr.Slider(label="CFG Start", minimum=1.0,
maximum=9.0, value=default_setting.spt_linear_CFG_Quality if torch.cuda.device_count() > 0 else 1.0, step=0.5)
with gr.Column():
linear_s_stage2 = gr.Checkbox(label="Linear Restoring Guidance", value=False)
spt_linear_s_stage2 = gr.Slider(label="Guidance Start", minimum=0.0,
maximum=1.0, value=0.0, step=0.05)
with gr.Column():
diff_dtype = gr.Radio([["fp32 (precision)", "fp32"], ["fp16 (medium)", "fp16"], ["bf16 (speed)", "bf16"]], label="Diffusion Data Type", value="fp32",
interactive=True)
with gr.Column():
ae_dtype = gr.Radio([["fp32 (precision)", "fp32"], ["bf16 (speed)", "bf16"]], label="Auto-Encoder Data Type", value="fp32",
interactive=True)
randomize_seed = gr.Checkbox(label="\U0001F3B2 Randomize seed", value=True, info="If checked, result is always different")
seed = gr.Slider(label="Seed", minimum=0, maximum=max_64_bit_int, step=1, randomize=True)
with gr.Group():
param_setting = gr.Radio(["Quality", "Fidelity"], interactive=True, label="Presetting", value="Quality")
restart_button = gr.Button(value="Apply presetting")
with gr.Column():
diffusion_button = gr.Button(value="🚀 Upscale/Restore", variant="primary", elem_id="process_button")
reset_btn = gr.Button(value="🧹 Reinit page", variant="stop", elem_id="reset_button", visible=False)
restore_information = gr.HTML(value="Restart the process to get another result.", visible=False)
result_image = gr.Image(label='Result Image', show_label=True, interactive=False, elem_id='result_image')
gr.Examples(
examples=[
# 例を適宜追加または削除
],
run_on_click=True,
fn=stage2_process,
inputs=[
input_image,
rotation,
denoise_image,
prompt,
a_prompt,
n_prompt,
num_samples,
min_size,
downscale,
upscale,
edm_steps,
s_stage1,
s_stage2,
s_cfg,
randomize_seed,
seed,
s_churn,
s_noise,
color_fix_type,
diff_dtype,
ae_dtype,
gamma_correction,
linear_CFG,
linear_s_stage2,
spt_linear_CFG,
spt_linear_s_stage2,
model_select,
output_format,
allocation
],
outputs=[
result_image,
restore_information,
reset_btn
],
cache_examples=False,
)
with gr.Row():
gr.Markdown(claim_md)
input_image.upload(fn=check_upload, inputs=[
input_image
], outputs=[
rotation
], queue=False, show_progress=False)
denoise_button.click(fn=check, inputs=[
input_image
], outputs=[], queue=False, show_progress=False).success(fn=stage1_process, inputs=[
input_image,
gamma_correction,
diff_dtype,
ae_dtype
], outputs=[
denoise_image,
denoise_information
])
diffusion_button.click(fn=update_seed, inputs=[
randomize_seed,
seed
], outputs=[
seed
], queue=False, show_progress=False).then(fn=check, inputs=[
input_image
], outputs=[], queue=False, show_progress=False).success(fn=stage2_process, inputs=[
input_image,
rotation,
denoise_image,
prompt,
a_prompt,
n_prompt,
num_samples,
min_size,
downscale,
upscale,
edm_steps,
s_stage1,
s_stage2,
s_cfg,
randomize_seed,
seed,
s_churn,
s_noise,
color_fix_type,
diff_dtype,
ae_dtype,
gamma_correction,
linear_CFG,
linear_s_stage2,
spt_linear_CFG,
spt_linear_s_stage2,
model_select,
output_format,
allocation
], outputs=[
result_image,
restore_information,
reset_btn
])
restart_button.click(fn=load_and_reset, inputs=[
param_setting
], outputs=[
edm_steps,
s_cfg,
s_stage2,
s_stage1,
s_churn,
s_noise,
a_prompt,
n_prompt,
color_fix_type,
linear_CFG,
linear_s_stage2,
spt_linear_CFG,
spt_linear_s_stage2,
model_select
])
reset_btn.click(fn=reset, inputs=[], outputs=[
input_image,
rotation,
denoise_image,
prompt,
a_prompt,
n_prompt,
num_samples,
min_size,
downscale,
upscale,
edm_steps,
s_stage1,
s_stage2,
s_cfg,
randomize_seed,
seed,
s_churn,
s_noise,
color_fix_type,
diff_dtype,
ae_dtype,
gamma_correction,
linear_CFG,
linear_s_stage2,
spt_linear_CFG,
spt_linear_s_stage2,
model_select,
output_format,
allocation
], queue=False, show_progress=False)
interface.queue(10).launch(show_error=True)
|