Spaces:
Running
Running
from cv2 import norm | |
import torch | |
import torch.nn.functional as F | |
from torch import layer_norm, nn | |
import numpy as np | |
import clip | |
import random | |
import math | |
from ..builder import SUBMODULES, build_attention | |
from .diffusion_transformer import DiffusionTransformer | |
def zero_module(module): | |
""" | |
Zero out the parameters of a module and return it. | |
""" | |
for p in module.parameters(): | |
p.detach().zero_() | |
return module | |
def set_requires_grad(nets, requires_grad=False): | |
"""Set requies_grad for all the networks. | |
Args: | |
nets (nn.Module | list[nn.Module]): A list of networks or a single | |
network. | |
requires_grad (bool): Whether the networks require gradients or not | |
""" | |
if not isinstance(nets, list): | |
nets = [nets] | |
for net in nets: | |
if net is not None: | |
for param in net.parameters(): | |
param.requires_grad = requires_grad | |
class FFN(nn.Module): | |
def __init__(self, latent_dim, ffn_dim, dropout): | |
super().__init__() | |
self.linear1 = nn.Linear(latent_dim, ffn_dim) | |
self.linear2 = zero_module(nn.Linear(ffn_dim, latent_dim)) | |
self.activation = nn.GELU() | |
self.dropout = nn.Dropout(dropout) | |
def forward(self, x, **kwargs): | |
y = self.linear2(self.dropout(self.activation(self.linear1(x)))) | |
y = x + y | |
return y | |
class EncoderLayer(nn.Module): | |
def __init__(self, | |
sa_block_cfg=None, | |
ca_block_cfg=None, | |
ffn_cfg=None): | |
super().__init__() | |
self.sa_block = build_attention(sa_block_cfg) | |
self.ffn = FFN(**ffn_cfg) | |
def forward(self, **kwargs): | |
if self.sa_block is not None: | |
x = self.sa_block(**kwargs) | |
kwargs.update({'x': x}) | |
if self.ffn is not None: | |
x = self.ffn(**kwargs) | |
return x | |
class RetrievalDatabase(nn.Module): | |
def __init__(self, | |
num_retrieval=None, | |
topk=None, | |
retrieval_file=None, | |
latent_dim=512, | |
output_dim=512, | |
num_layers=2, | |
num_motion_layers=4, | |
kinematic_coef=0.1, | |
max_seq_len=196, | |
num_heads=8, | |
ff_size=1024, | |
stride=4, | |
sa_block_cfg=None, | |
ffn_cfg=None, | |
dropout=0): | |
super().__init__() | |
self.num_retrieval = num_retrieval | |
self.topk = topk | |
self.latent_dim = latent_dim | |
self.stride = stride | |
self.kinematic_coef = kinematic_coef | |
self.num_layers = num_layers | |
self.num_motion_layers = num_motion_layers | |
self.max_seq_len = max_seq_len | |
data = np.load(retrieval_file) | |
self.text_features = torch.Tensor(data['text_features']) | |
self.captions = data['captions'] | |
self.motions = data['motions'] | |
self.m_lengths = data['m_lengths'] | |
self.clip_seq_features = data['clip_seq_features'] | |
self.train_indexes = data.get('train_indexes', None) | |
self.test_indexes = data.get('test_indexes', None) | |
self.latent_dim = latent_dim | |
self.output_dim = output_dim | |
self.motion_proj = nn.Linear(self.motions.shape[-1], self.latent_dim) | |
self.motion_pos_embedding = nn.Parameter(torch.randn(max_seq_len, self.latent_dim)) | |
self.motion_encoder_blocks = nn.ModuleList() | |
for i in range(num_motion_layers): | |
self.motion_encoder_blocks.append( | |
EncoderLayer( | |
sa_block_cfg=sa_block_cfg, | |
ffn_cfg=ffn_cfg | |
) | |
) | |
TransEncoderLayer = nn.TransformerEncoderLayer( | |
d_model=self.latent_dim, | |
nhead=num_heads, | |
dim_feedforward=ff_size, | |
dropout=dropout, | |
activation="gelu") | |
self.text_encoder = nn.TransformerEncoder( | |
TransEncoderLayer, | |
num_layers=num_layers) | |
self.results = {} | |
def extract_text_feature(self, text, clip_model, device): | |
text = clip.tokenize([text], truncate=True).to(device) | |
with torch.no_grad(): | |
text_features = clip_model.encode_text(text) | |
return text_features | |
def encode_text(self, text, device): | |
with torch.no_grad(): | |
text = clip.tokenize(text, truncate=True).to(device) | |
x = self.clip.token_embedding(text).type(self.clip.dtype) # [batch_size, n_ctx, d_model] | |
x = x + self.clip.positional_embedding.type(self.clip.dtype) | |
x = x.permute(1, 0, 2) # NLD -> LND | |
x = self.clip.transformer(x) | |
x = self.clip.ln_final(x).type(self.clip.dtype) | |
# B, T, D | |
xf_out = x.permute(1, 0, 2) | |
return xf_out | |
def retrieve(self, caption, length, clip_model, device, idx=None): | |
if self.training and self.train_indexes is not None and idx is not None: | |
idx = idx.item() | |
indexes = self.train_indexes[idx] | |
data = [] | |
cnt = 0 | |
for retr_idx in indexes: | |
if retr_idx != idx: | |
data.append(retr_idx) | |
cnt += 1 | |
if cnt == self.topk: | |
break | |
random.shuffle(data) | |
return data[:self.num_retrieval] | |
elif not self.training and self.test_indexes is not None and idx is not None: | |
idx = idx.item() | |
indexes = self.test_indexes[idx] | |
data = [] | |
cnt = 0 | |
for retr_idx in indexes: | |
data.append(retr_idx) | |
cnt += 1 | |
if cnt == self.topk: | |
break | |
# random.shuffle(data) | |
return data[:self.num_retrieval] | |
else: | |
value = hash(caption) | |
if value in self.results: | |
return self.results[value] | |
text_feature = self.extract_text_feature(caption, clip_model, device) | |
rel_length = torch.LongTensor(self.m_lengths).to(device) | |
rel_length = torch.abs(rel_length - length) / torch.clamp(rel_length, min=length) | |
semantic_score = F.cosine_similarity(self.text_features.to(device), text_feature) | |
kinematic_score = torch.exp(-rel_length * self.kinematic_coef) | |
score = semantic_score * kinematic_score | |
indexes = torch.argsort(score, descending=True) | |
data = [] | |
cnt = 0 | |
for idx in indexes: | |
caption, motion, m_length = self.captions[idx], self.motions[idx], self.m_lengths[idx] | |
if not self.training or m_length != length: | |
cnt += 1 | |
data.append(idx.item()) | |
if cnt == self.num_retrieval: | |
self.results[value] = data | |
return data | |
assert False | |
def generate_src_mask(self, T, length): | |
B = len(length) | |
src_mask = torch.ones(B, T) | |
for i in range(B): | |
for j in range(length[i], T): | |
src_mask[i, j] = 0 | |
return src_mask | |
def forward(self, captions, lengths, clip_model, device, idx=None): | |
B = len(captions) | |
all_indexes = [] | |
for b_ix in range(B): | |
length = int(lengths[b_ix]) | |
if idx is None: | |
batch_indexes = self.retrieve(captions[b_ix], length, clip_model, device) | |
else: | |
batch_indexes = self.retrieve(captions[b_ix], length, clip_model, device, idx[b_ix]) | |
all_indexes.extend(batch_indexes) | |
all_indexes = np.array(all_indexes) | |
N = all_indexes.shape[0] | |
all_motions = torch.Tensor(self.motions[all_indexes]).to(device) | |
all_m_lengths = torch.Tensor(self.m_lengths[all_indexes]).long() | |
all_captions = self.captions[all_indexes].tolist() | |
T = all_motions.shape[1] | |
src_mask = self.generate_src_mask(T, all_m_lengths).to(device) | |
raw_src_mask = src_mask.clone() | |
re_motion = self.motion_proj(all_motions) + self.motion_pos_embedding.unsqueeze(0) | |
for module in self.motion_encoder_blocks: | |
re_motion = module(x=re_motion, src_mask=src_mask.unsqueeze(-1)) | |
re_motion = re_motion.view(B, self.num_retrieval, T, -1).contiguous() | |
# stride | |
re_motion = re_motion[:, :, ::self.stride, :].contiguous() | |
src_mask = src_mask[:, ::self.stride].contiguous() | |
src_mask = src_mask.view(B, self.num_retrieval, -1).contiguous() | |
T = 77 | |
all_text_seq_features = torch.Tensor(self.clip_seq_features[all_indexes]).to(device) | |
all_text_seq_features = all_text_seq_features.permute(1, 0, 2) | |
re_text = self.text_encoder(all_text_seq_features) | |
re_text = re_text.permute(1, 0, 2).view(B, self.num_retrieval, T, -1).contiguous() | |
re_text = re_text[:, :, -1:, :].contiguous() | |
# T = re_motion.shape[2] | |
# re_feat = re_feat.view(B, self.num_retrieval * T, -1).contiguous() | |
re_dict = dict( | |
re_text=re_text, | |
re_motion=re_motion, | |
re_mask=src_mask, | |
raw_motion=all_motions, | |
raw_motion_length=all_m_lengths, | |
raw_motion_mask=raw_src_mask) | |
return re_dict | |
class ReMoDiffuseTransformer(DiffusionTransformer): | |
def __init__(self, | |
retrieval_cfg=None, | |
scale_func_cfg=None, | |
**kwargs): | |
super().__init__(**kwargs) | |
self.database = RetrievalDatabase(**retrieval_cfg) | |
self.scale_func_cfg = scale_func_cfg | |
def scale_func(self, timestep): | |
coarse_scale = self.scale_func_cfg['coarse_scale'] | |
w = (1 - (1000 - timestep) / 1000) * coarse_scale + 1 | |
if timestep > 100: | |
if random.randint(0, 1) == 0: | |
output = { | |
'both_coef': w, | |
'text_coef': 0, | |
'retr_coef': 1 - w, | |
'none_coef': 0 | |
} | |
else: | |
output = { | |
'both_coef': 0, | |
'text_coef': w, | |
'retr_coef': 0, | |
'none_coef': 1 - w | |
} | |
else: | |
both_coef = self.scale_func_cfg['both_coef'] | |
text_coef = self.scale_func_cfg['text_coef'] | |
retr_coef = self.scale_func_cfg['retr_coef'] | |
none_coef = 1 - both_coef - text_coef - retr_coef | |
output = { | |
'both_coef': both_coef, | |
'text_coef': text_coef, | |
'retr_coef': retr_coef, | |
'none_coef': none_coef | |
} | |
return output | |
def get_precompute_condition(self, | |
text=None, | |
motion_length=None, | |
xf_out=None, | |
re_dict=None, | |
device=None, | |
sample_idx=None, | |
clip_feat=None, | |
**kwargs): | |
if xf_out is None: | |
xf_out = self.encode_text(text, clip_feat, device) | |
output = {'xf_out': xf_out} | |
if re_dict is None: | |
re_dict = self.database(text, motion_length, self.clip, device, idx=sample_idx) | |
output['re_dict'] = re_dict | |
return output | |
def post_process(self, motion): | |
return motion | |
def forward_train(self, h=None, src_mask=None, emb=None, xf_out=None, re_dict=None, **kwargs): | |
B, T = h.shape[0], h.shape[1] | |
cond_type = torch.randint(0, 100, size=(B, 1, 1)).to(h.device) | |
for module in self.temporal_decoder_blocks: | |
h = module(x=h, xf=xf_out, emb=emb, src_mask=src_mask, cond_type=cond_type, re_dict=re_dict) | |
output = self.out(h).view(B, T, -1).contiguous() | |
return output | |
def forward_test(self, h=None, src_mask=None, emb=None, xf_out=None, re_dict=None, timesteps=None, **kwargs): | |
B, T = h.shape[0], h.shape[1] | |
both_cond_type = torch.zeros(B, 1, 1).to(h.device) + 99 | |
text_cond_type = torch.zeros(B, 1, 1).to(h.device) + 1 | |
retr_cond_type = torch.zeros(B, 1, 1).to(h.device) + 10 | |
none_cond_type = torch.zeros(B, 1, 1).to(h.device) | |
all_cond_type = torch.cat(( | |
both_cond_type, text_cond_type, retr_cond_type, none_cond_type | |
), dim=0) | |
h = h.repeat(4, 1, 1) | |
xf_out = xf_out.repeat(4, 1, 1) | |
emb = emb.repeat(4, 1) | |
src_mask = src_mask.repeat(4, 1, 1) | |
if re_dict['re_motion'].shape[0] != h.shape[0]: | |
re_dict['re_motion'] = re_dict['re_motion'].repeat(4, 1, 1, 1) | |
re_dict['re_text'] = re_dict['re_text'].repeat(4, 1, 1, 1) | |
re_dict['re_mask'] = re_dict['re_mask'].repeat(4, 1, 1) | |
for module in self.temporal_decoder_blocks: | |
h = module(x=h, xf=xf_out, emb=emb, src_mask=src_mask, cond_type=all_cond_type, re_dict=re_dict) | |
out = self.out(h).view(4 * B, T, -1).contiguous() | |
out_both = out[:B].contiguous() | |
out_text = out[B: 2 * B].contiguous() | |
out_retr = out[2 * B: 3 * B].contiguous() | |
out_none = out[3 * B:].contiguous() | |
coef_cfg = self.scale_func(int(timesteps[0])) | |
both_coef = coef_cfg['both_coef'] | |
text_coef = coef_cfg['text_coef'] | |
retr_coef = coef_cfg['retr_coef'] | |
none_coef = coef_cfg['none_coef'] | |
output = out_both * both_coef + out_text * text_coef + out_retr * retr_coef + out_none * none_coef | |
return output |