File size: 13,414 Bytes
31e192b
 
 
 
 
 
 
 
 
98e4681
 
f4f6792
31e192b
 
 
 
 
 
 
 
 
 
f4f6792
31e192b
 
f4f6792
31e192b
 
f4f6792
31e192b
 
 
 
 
98e4681
 
 
 
31e192b
f4f6792
 
31e192b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f4f6792
31e192b
f4f6792
 
 
 
 
 
 
31e192b
 
 
 
 
f4f6792
31e192b
f4f6792
31e192b
 
 
 
 
 
 
 
 
f4f6792
 
173cecf
31e192b
 
 
 
637af2f
31e192b
 
 
 
8b3bdd0
31e192b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98e4681
 
 
 
 
 
31e192b
 
 
 
 
 
 
8b3bdd0
31e192b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98e4681
6514fe3
98e4681
 
31e192b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dca463b
31e192b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e315714
31e192b
 
 
 
 
 
 
98e4681
3bbf668
98e4681
 
 
 
31e192b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c679e0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
import argparse
import base64
import io
import os
import re
import sys
import traceback
import uuid
from typing import List, Optional
from transformers import AutoProcessor, AutoModelForZeroShotImageClassification
from transformers import CLIPProcessor, CLIPModel

import cv2
import numpy as np
import pandas as pd
import pinecone
import pyiqa
import timm
import torch
import uvicorn
from dotenv import load_dotenv
from fastapi import FastAPI, File, Form, HTTPException, UploadFile
from PIL import Image, ImageEnhance
from pydantic import BaseModel
from sentence_transformers import SentenceTransformer, util

load_dotenv()
pinecone.init(api_key=os.getenv("PINECONE_KEY"), environment=os.getenv("PINECONE_ENV"))

IMAGE_SIMILARITY_DEMO = "/find-similar-image/"
IMAGE_SIMILARITY_PINECONE_DEMO = "/find-similar-image-pinecone/"
INDEX_NAME = "imagesearch-demo"
INDEX_DIMENSION = 512
TMP_DIR = "tmp"
model_type = "huggingface"
# model_type = "sentence_transformers"
processor = AutoProcessor.from_pretrained("patrickjohncyh/fashion-clip")
model = CLIPModel.from_pretrained("patrickjohncyh/fashion-clip")

image_sim_model = SentenceTransformer("clip-ViT-B-32")

def enhance_image(pil_image):
    # Convert PIL Image to OpenCV format
    open_cv_image = np.array(pil_image)
    # Convert RGB to BGR
    open_cv_image = open_cv_image[:, :, ::-1].copy()

    # Convert to grayscale
    gray = cv2.cvtColor(open_cv_image, cv2.COLOR_BGR2GRAY)

    # Histogram equalization
    equ = cv2.equalizeHist(gray)
    
    # Adaptive Histogram Equalization
    clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8,8))
    adaptive_hist_eq = clahe.apply(gray)

    # Gaussian Blurring
    gaussian_blurred = cv2.GaussianBlur(adaptive_hist_eq, (5,5), 0)

    # Noise reduction
    denoised = cv2.medianBlur(gaussian_blurred, 3)

    # Brightness & Contrast adjustment
    lab = cv2.cvtColor(open_cv_image, cv2.COLOR_BGR2Lab)
    l, a, b = cv2.split(lab)
    cl = clahe.apply(l)
    limg = cv2.merge((cl, a, b))
    enhanced_image = cv2.cvtColor(limg, cv2.COLOR_Lab2BGR)

    # Convert back to PIL Image
    enhanced_pil_image = Image.fromarray(cv2.cvtColor(enhanced_image, cv2.COLOR_BGR2RGB))

    # IMAGE AUGMENTATION
    # For demonstration purposes, let's do a simple brightness adjustment.
    # In practice, choose the augmentations that suit your task.
    enhancer = ImageEnhance.Brightness(enhanced_pil_image)
    enhanced_pil_image = enhancer.enhance(1.2)  # Brighten the image by 20%
    
    return enhanced_pil_image

    
print("checking pinecone Index")
if INDEX_NAME not in pinecone.list_indexes():
    # delete the current index and create the new index if it does not exist
    for delete_index in pinecone.list_indexes():
        print(f"Deleting exitsing pinecone Index : {delete_index}")

        pinecone.delete_index(delete_index)
    print(f"Creating new pinecone Index : {INDEX_NAME}")
    pinecone.create_index(INDEX_NAME, dimension=INDEX_DIMENSION, metric="cosine")
    
print("Connecting to Pinecone Index")
index = pinecone.Index(INDEX_NAME)
    

device = "cuda" if torch.cuda.is_available() else "cpu"

os.makedirs(TMP_DIR, exist_ok=True)


device = "cuda" if torch.cuda.is_available() else "cpu"


os.makedirs(TMP_DIR, exist_ok=True)




app = FastAPI(title="CV Demos")


# define response
@app.get("/")
def root_route():
    return {"error": f"Use GET {IMAGE_SIMILARITY_PINECONE_DEMO} instead of the root route!"}


@app.post(IMAGE_SIMILARITY_DEMO)
async def image_search_local(
    images_to_search: List[UploadFile], query_image: UploadFile = File(...), top_k: int = 5, 
):
    print(
        f"Recived images of length: {len(images_to_search)} needs to retrieve top k  : {top_k} similar images as result"
    )
    try:
        extension = query_image.filename.split(".")[-1] in ("jpg", "jpeg", "png")
        search_images = []
        search_filenames = []
        print("Processing request...")
        for image in images_to_search:
            if image.filename.split(".")[-1] not in ("jpg", "jpeg", "png"):
                return "Image must be jpg or png format!"
            # read image contain
            search_filenames.append(image.filename)
            contents = await image.read()
            search_images.append(Image.open(io.BytesIO(contents)))
        print("Indexing images to search...")

        corpus_embeddings = image_sim_model.encode(
            search_images, convert_to_tensor=True, show_progress_bar=True
        )
        if not extension:
            return "Image must be jpg or png format!"
        # read image contain
        contents = await query_image.read()
        query_image = Image.open(io.BytesIO(contents))
        print("Indexing query image...")

        prompt_embedding = image_sim_model.encode(query_image, convert_to_tensor=True)
        print("Searching query image...")

        hits = util.semantic_search(prompt_embedding, corpus_embeddings, top_k=top_k)
        # hits = pd.DataFrame(hits[0], columns=['corpus_id', 'score'])
        # tmp_file = f"{TMP_DIR}/tmp.png"
        # pil_image.save(tmp_file)
        # answer_git_large = generate_answer_git(git_processor_large, git_model_large, image, question)
        print("Creating the result..")
        similar_images = []
        print("hits ", hits)
        for hit in hits[0]:
            # print("Finding the image ")
            # print("Type of images list ", type(search_images), "similar image id ",  hit['corpus_id'])
            open_cv_image = np.array(search_images[hit["corpus_id"]].convert("RGB"))[:, :, ::-1]
            # print("cv2.imencode the image ")
            _, encoded_img = cv2.imencode(".PNG", open_cv_image)
            # print("base64 the image ")
            encoded_img = base64.b64encode(encoded_img)
            # print("Appending the image ")
            similar_images.append(
                {
                    "filename": search_filenames[hit["corpus_id"]],
                    "dimensions": str(open_cv_image.shape),
                    "score": hit["score"],
                    "encoded_img": encoded_img,
                }
            )
        print("Sending result..")

        return {"similar_images": similar_images}

    except:
        e = sys.exc_info()[1]
        raise HTTPException(status_code=500, detail=str(e))


def get_clip_vectors(image):
    img_inputs = processor(images=image, return_tensors="pt")
    img_emb = model.get_image_features(**img_inputs)
    
    return img_emb
    
@app.post(IMAGE_SIMILARITY_PINECONE_DEMO)
async def image_search_pinecone(
    images_to_search: Optional[List[UploadFile]] = File(None),
    query_image: Optional[UploadFile] = File(None),
    top_k: int = 5,
    namespace="av_local",
    action="query",
    model_type= "huggingface"
):
    
    try:
        # Function to delete all files from the database
        print(f"Received request with images_to_search: {images_to_search} and query_image: {query_image} with action: {action}")
        if action == "delete":
            index = pinecone.Index(INDEX_NAME)
            delete_response = index.delete(delete_all=True, namespace=namespace)
            return {f"Deleted the namespace: {namespace}": delete_response}
        
        elif action == "query" and query_image is not None:
            extension = query_image.filename.split(".")[-1] in ("jpg", "jpeg", "png", "JPG", "PNG", "JPEG")
            if not extension:
                return "Image must be jpg or png format!"
            # read image contain
            contents = await query_image.read()
            query_image = Image.open(io.BytesIO(contents))
            print("Indexing query image...")
            query_image = enhance_image(query_image)
            if model_type =="huggingface":
                prompt_embedding = get_clip_vectors(query_image).tolist()
            else:
                prompt_embedding = image_sim_model.encode(query_image, convert_to_tensor=True).tolist()
            if INDEX_NAME not in pinecone.list_indexes():
                return {"similar_images": [], "status": "No index found for images"}

            else:
                index = pinecone.Index(INDEX_NAME)
                query_response = index.query(
                    namespace=namespace,
                    top_k=top_k,
                    include_values=True,
                    include_metadata=True,
                    vector=prompt_embedding,
                )
                result_images = [d["metadata"]["file_path"] for d in query_response["matches"]]
                print("Creating the result..")
                similar_images = []
                print("Retrieved matches ", query_response["matches"])
                for file_path in result_images:
                    try:
                        # print("Finding the image ")
                        # print("Type of images list ", type(search_images), "similar image id ",  hit['corpus_id'])
                        open_cv_image = cv2.imread(file_path)
                        # print("cv2.imencode the image ")
                        _, encoded_img = cv2.imencode(".PNG", open_cv_image)
                        # print("base64 the image ")
                        encoded_img = base64.b64encode(encoded_img)
                        # print("Appending the image ")
                        similar_images.append(
                            {
                                "filename": file_path,
                                "dimensions": str(open_cv_image.shape),
                                "score": 0,
                                "encoded_img": encoded_img,
                            }
                        )
                    except:
                         similar_images.append(
                            {
                                "filename": file_path,
                                "dimensions": None,
                                "score": 0,
                                "encoded_img": None,
                            }
                        )
                print("Sending result..")

                return {"similar_images": similar_images}

        elif action == "index" and (images_to_search is not None) and (len(images_to_search) > 0):
            print(
                f"Recived images of length: {len(images_to_search)} needs to retrieve top k  : {top_k} similar images as result"
            )
            print(f"Action indexing is executing for : {len(images_to_search)} images")
            # if the index does not already exist, we create it
            # check if the abstractive-question-answering index exists
            print("checking pinecone Index")
            if INDEX_NAME not in pinecone.list_indexes():
                # delete the current index and create the new index if it does not exist
                for delete_index in pinecone.list_indexes():
                    print(f"Deleting exitsing pinecone Index : {delete_index}")

                    pinecone.delete_index(delete_index)
                print(f"Creating new pinecone Index : {INDEX_NAME}")
                pinecone.create_index(INDEX_NAME, dimension=INDEX_DIMENSION, metric="cosine")
            # instantiate connection to your Pinecone index
            print(f"Connecting to pinecone Index : {INDEX_NAME}")
            index = pinecone.Index(INDEX_NAME)
            search_images = []
            meta_datas = []
            ids = []
            print("Processing request...")
            for image in images_to_search:
                if image.filename.split(".")[-1] not in ("jpg", "jpeg", "png", "JPG", "PNG", "JPEG"):
                    return "Image must be jpg or png format!"
                # read image contain
                contents = await image.read()
                pil_image = Image.open(io.BytesIO(contents))
                # pil_image = enhance_image(pil_image)
                tmp_file = f"{TMP_DIR}/{image.filename}"
                pil_image.save(tmp_file)
                meta_datas.append({"file_path": tmp_file})
                search_images.append(pil_image)
                ids.append(str(uuid.uuid1()).replace("-",""))

            print("Encoding images to vectors...")
            if model_type =="huggingface":
                corpus_embeddings = get_clip_vectors(search_images).tolist()
            else:
                corpus_embeddings = image_sim_model.encode(
                    search_images, convert_to_tensor=True, show_progress_bar=True
                ).tolist()
            print(f"Indexing images to pinecone Index : {INDEX_NAME}")
            index.upsert(
                vectors=list(zip(ids, corpus_embeddings, meta_datas)), namespace=namespace
            )
            

            return {"similar_images": [], "status": "Indexing succesfull for uploaded files"}
        else:
            return {"similar_images": []}
    except Exception as e:
        e = sys.exc_info()[1]
        print(f"exception happened {e} {str(traceback.print_exc())}")
        raise HTTPException(status_code=500, detail=str(e))


if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="Fast API exposing YOLOv5 model")
    parser.add_argument("--port", default=8000, type=int, help="port number")
    # parser.add_argument('--model', nargs='+', default=['yolov5s'], help='model(s) to run, i.e. --model yolov5n yolov5s')
    opt = parser.parse_args()
    uvicorn.run(app, port=opt.port)