Spaces:
Runtime error
Runtime error
File size: 13,414 Bytes
31e192b 98e4681 f4f6792 31e192b f4f6792 31e192b f4f6792 31e192b f4f6792 31e192b 98e4681 31e192b f4f6792 31e192b f4f6792 31e192b f4f6792 31e192b f4f6792 31e192b f4f6792 31e192b f4f6792 173cecf 31e192b 637af2f 31e192b 8b3bdd0 31e192b 98e4681 31e192b 8b3bdd0 31e192b 98e4681 6514fe3 98e4681 31e192b dca463b 31e192b e315714 31e192b 98e4681 3bbf668 98e4681 31e192b 0c679e0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 |
import argparse
import base64
import io
import os
import re
import sys
import traceback
import uuid
from typing import List, Optional
from transformers import AutoProcessor, AutoModelForZeroShotImageClassification
from transformers import CLIPProcessor, CLIPModel
import cv2
import numpy as np
import pandas as pd
import pinecone
import pyiqa
import timm
import torch
import uvicorn
from dotenv import load_dotenv
from fastapi import FastAPI, File, Form, HTTPException, UploadFile
from PIL import Image, ImageEnhance
from pydantic import BaseModel
from sentence_transformers import SentenceTransformer, util
load_dotenv()
pinecone.init(api_key=os.getenv("PINECONE_KEY"), environment=os.getenv("PINECONE_ENV"))
IMAGE_SIMILARITY_DEMO = "/find-similar-image/"
IMAGE_SIMILARITY_PINECONE_DEMO = "/find-similar-image-pinecone/"
INDEX_NAME = "imagesearch-demo"
INDEX_DIMENSION = 512
TMP_DIR = "tmp"
model_type = "huggingface"
# model_type = "sentence_transformers"
processor = AutoProcessor.from_pretrained("patrickjohncyh/fashion-clip")
model = CLIPModel.from_pretrained("patrickjohncyh/fashion-clip")
image_sim_model = SentenceTransformer("clip-ViT-B-32")
def enhance_image(pil_image):
# Convert PIL Image to OpenCV format
open_cv_image = np.array(pil_image)
# Convert RGB to BGR
open_cv_image = open_cv_image[:, :, ::-1].copy()
# Convert to grayscale
gray = cv2.cvtColor(open_cv_image, cv2.COLOR_BGR2GRAY)
# Histogram equalization
equ = cv2.equalizeHist(gray)
# Adaptive Histogram Equalization
clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8,8))
adaptive_hist_eq = clahe.apply(gray)
# Gaussian Blurring
gaussian_blurred = cv2.GaussianBlur(adaptive_hist_eq, (5,5), 0)
# Noise reduction
denoised = cv2.medianBlur(gaussian_blurred, 3)
# Brightness & Contrast adjustment
lab = cv2.cvtColor(open_cv_image, cv2.COLOR_BGR2Lab)
l, a, b = cv2.split(lab)
cl = clahe.apply(l)
limg = cv2.merge((cl, a, b))
enhanced_image = cv2.cvtColor(limg, cv2.COLOR_Lab2BGR)
# Convert back to PIL Image
enhanced_pil_image = Image.fromarray(cv2.cvtColor(enhanced_image, cv2.COLOR_BGR2RGB))
# IMAGE AUGMENTATION
# For demonstration purposes, let's do a simple brightness adjustment.
# In practice, choose the augmentations that suit your task.
enhancer = ImageEnhance.Brightness(enhanced_pil_image)
enhanced_pil_image = enhancer.enhance(1.2) # Brighten the image by 20%
return enhanced_pil_image
print("checking pinecone Index")
if INDEX_NAME not in pinecone.list_indexes():
# delete the current index and create the new index if it does not exist
for delete_index in pinecone.list_indexes():
print(f"Deleting exitsing pinecone Index : {delete_index}")
pinecone.delete_index(delete_index)
print(f"Creating new pinecone Index : {INDEX_NAME}")
pinecone.create_index(INDEX_NAME, dimension=INDEX_DIMENSION, metric="cosine")
print("Connecting to Pinecone Index")
index = pinecone.Index(INDEX_NAME)
device = "cuda" if torch.cuda.is_available() else "cpu"
os.makedirs(TMP_DIR, exist_ok=True)
device = "cuda" if torch.cuda.is_available() else "cpu"
os.makedirs(TMP_DIR, exist_ok=True)
app = FastAPI(title="CV Demos")
# define response
@app.get("/")
def root_route():
return {"error": f"Use GET {IMAGE_SIMILARITY_PINECONE_DEMO} instead of the root route!"}
@app.post(IMAGE_SIMILARITY_DEMO)
async def image_search_local(
images_to_search: List[UploadFile], query_image: UploadFile = File(...), top_k: int = 5,
):
print(
f"Recived images of length: {len(images_to_search)} needs to retrieve top k : {top_k} similar images as result"
)
try:
extension = query_image.filename.split(".")[-1] in ("jpg", "jpeg", "png")
search_images = []
search_filenames = []
print("Processing request...")
for image in images_to_search:
if image.filename.split(".")[-1] not in ("jpg", "jpeg", "png"):
return "Image must be jpg or png format!"
# read image contain
search_filenames.append(image.filename)
contents = await image.read()
search_images.append(Image.open(io.BytesIO(contents)))
print("Indexing images to search...")
corpus_embeddings = image_sim_model.encode(
search_images, convert_to_tensor=True, show_progress_bar=True
)
if not extension:
return "Image must be jpg or png format!"
# read image contain
contents = await query_image.read()
query_image = Image.open(io.BytesIO(contents))
print("Indexing query image...")
prompt_embedding = image_sim_model.encode(query_image, convert_to_tensor=True)
print("Searching query image...")
hits = util.semantic_search(prompt_embedding, corpus_embeddings, top_k=top_k)
# hits = pd.DataFrame(hits[0], columns=['corpus_id', 'score'])
# tmp_file = f"{TMP_DIR}/tmp.png"
# pil_image.save(tmp_file)
# answer_git_large = generate_answer_git(git_processor_large, git_model_large, image, question)
print("Creating the result..")
similar_images = []
print("hits ", hits)
for hit in hits[0]:
# print("Finding the image ")
# print("Type of images list ", type(search_images), "similar image id ", hit['corpus_id'])
open_cv_image = np.array(search_images[hit["corpus_id"]].convert("RGB"))[:, :, ::-1]
# print("cv2.imencode the image ")
_, encoded_img = cv2.imencode(".PNG", open_cv_image)
# print("base64 the image ")
encoded_img = base64.b64encode(encoded_img)
# print("Appending the image ")
similar_images.append(
{
"filename": search_filenames[hit["corpus_id"]],
"dimensions": str(open_cv_image.shape),
"score": hit["score"],
"encoded_img": encoded_img,
}
)
print("Sending result..")
return {"similar_images": similar_images}
except:
e = sys.exc_info()[1]
raise HTTPException(status_code=500, detail=str(e))
def get_clip_vectors(image):
img_inputs = processor(images=image, return_tensors="pt")
img_emb = model.get_image_features(**img_inputs)
return img_emb
@app.post(IMAGE_SIMILARITY_PINECONE_DEMO)
async def image_search_pinecone(
images_to_search: Optional[List[UploadFile]] = File(None),
query_image: Optional[UploadFile] = File(None),
top_k: int = 5,
namespace="av_local",
action="query",
model_type= "huggingface"
):
try:
# Function to delete all files from the database
print(f"Received request with images_to_search: {images_to_search} and query_image: {query_image} with action: {action}")
if action == "delete":
index = pinecone.Index(INDEX_NAME)
delete_response = index.delete(delete_all=True, namespace=namespace)
return {f"Deleted the namespace: {namespace}": delete_response}
elif action == "query" and query_image is not None:
extension = query_image.filename.split(".")[-1] in ("jpg", "jpeg", "png", "JPG", "PNG", "JPEG")
if not extension:
return "Image must be jpg or png format!"
# read image contain
contents = await query_image.read()
query_image = Image.open(io.BytesIO(contents))
print("Indexing query image...")
query_image = enhance_image(query_image)
if model_type =="huggingface":
prompt_embedding = get_clip_vectors(query_image).tolist()
else:
prompt_embedding = image_sim_model.encode(query_image, convert_to_tensor=True).tolist()
if INDEX_NAME not in pinecone.list_indexes():
return {"similar_images": [], "status": "No index found for images"}
else:
index = pinecone.Index(INDEX_NAME)
query_response = index.query(
namespace=namespace,
top_k=top_k,
include_values=True,
include_metadata=True,
vector=prompt_embedding,
)
result_images = [d["metadata"]["file_path"] for d in query_response["matches"]]
print("Creating the result..")
similar_images = []
print("Retrieved matches ", query_response["matches"])
for file_path in result_images:
try:
# print("Finding the image ")
# print("Type of images list ", type(search_images), "similar image id ", hit['corpus_id'])
open_cv_image = cv2.imread(file_path)
# print("cv2.imencode the image ")
_, encoded_img = cv2.imencode(".PNG", open_cv_image)
# print("base64 the image ")
encoded_img = base64.b64encode(encoded_img)
# print("Appending the image ")
similar_images.append(
{
"filename": file_path,
"dimensions": str(open_cv_image.shape),
"score": 0,
"encoded_img": encoded_img,
}
)
except:
similar_images.append(
{
"filename": file_path,
"dimensions": None,
"score": 0,
"encoded_img": None,
}
)
print("Sending result..")
return {"similar_images": similar_images}
elif action == "index" and (images_to_search is not None) and (len(images_to_search) > 0):
print(
f"Recived images of length: {len(images_to_search)} needs to retrieve top k : {top_k} similar images as result"
)
print(f"Action indexing is executing for : {len(images_to_search)} images")
# if the index does not already exist, we create it
# check if the abstractive-question-answering index exists
print("checking pinecone Index")
if INDEX_NAME not in pinecone.list_indexes():
# delete the current index and create the new index if it does not exist
for delete_index in pinecone.list_indexes():
print(f"Deleting exitsing pinecone Index : {delete_index}")
pinecone.delete_index(delete_index)
print(f"Creating new pinecone Index : {INDEX_NAME}")
pinecone.create_index(INDEX_NAME, dimension=INDEX_DIMENSION, metric="cosine")
# instantiate connection to your Pinecone index
print(f"Connecting to pinecone Index : {INDEX_NAME}")
index = pinecone.Index(INDEX_NAME)
search_images = []
meta_datas = []
ids = []
print("Processing request...")
for image in images_to_search:
if image.filename.split(".")[-1] not in ("jpg", "jpeg", "png", "JPG", "PNG", "JPEG"):
return "Image must be jpg or png format!"
# read image contain
contents = await image.read()
pil_image = Image.open(io.BytesIO(contents))
# pil_image = enhance_image(pil_image)
tmp_file = f"{TMP_DIR}/{image.filename}"
pil_image.save(tmp_file)
meta_datas.append({"file_path": tmp_file})
search_images.append(pil_image)
ids.append(str(uuid.uuid1()).replace("-",""))
print("Encoding images to vectors...")
if model_type =="huggingface":
corpus_embeddings = get_clip_vectors(search_images).tolist()
else:
corpus_embeddings = image_sim_model.encode(
search_images, convert_to_tensor=True, show_progress_bar=True
).tolist()
print(f"Indexing images to pinecone Index : {INDEX_NAME}")
index.upsert(
vectors=list(zip(ids, corpus_embeddings, meta_datas)), namespace=namespace
)
return {"similar_images": [], "status": "Indexing succesfull for uploaded files"}
else:
return {"similar_images": []}
except Exception as e:
e = sys.exc_info()[1]
print(f"exception happened {e} {str(traceback.print_exc())}")
raise HTTPException(status_code=500, detail=str(e))
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Fast API exposing YOLOv5 model")
parser.add_argument("--port", default=8000, type=int, help="port number")
# parser.add_argument('--model', nargs='+', default=['yolov5s'], help='model(s) to run, i.e. --model yolov5n yolov5s')
opt = parser.parse_args()
uvicorn.run(app, port=opt.port) |