mrfakename's picture
Sync from GitHub repo
1aefd03 verified
from __future__ import annotations
import gc
import math
import os
import torch
import torchaudio
import wandb
from accelerate import Accelerator
from accelerate.utils import DistributedDataParallelKwargs
from ema_pytorch import EMA
from torch.optim import AdamW
from torch.optim.lr_scheduler import LinearLR, SequentialLR
from torch.utils.data import DataLoader, Dataset, SequentialSampler
from tqdm import tqdm
from f5_tts.model import CFM
from f5_tts.model.dataset import DynamicBatchSampler, collate_fn
from f5_tts.model.utils import default, exists
# trainer
class Trainer:
def __init__(
self,
model: CFM,
epochs,
learning_rate,
num_warmup_updates=20000,
save_per_updates=1000,
keep_last_n_checkpoints: int = -1, # -1 to keep all, 0 to not save intermediate, > 0 to keep last N checkpoints
checkpoint_path=None,
batch_size_per_gpu=32,
batch_size_type: str = "sample",
max_samples=32,
grad_accumulation_steps=1,
max_grad_norm=1.0,
noise_scheduler: str | None = None,
duration_predictor: torch.nn.Module | None = None,
logger: str | None = "wandb", # "wandb" | "tensorboard" | None
wandb_project="test_f5-tts",
wandb_run_name="test_run",
wandb_resume_id: str = None,
log_samples: bool = False,
last_per_updates=None,
accelerate_kwargs: dict = dict(),
ema_kwargs: dict = dict(),
bnb_optimizer: bool = False,
mel_spec_type: str = "vocos", # "vocos" | "bigvgan"
is_local_vocoder: bool = False, # use local path vocoder
local_vocoder_path: str = "", # local vocoder path
model_cfg_dict: dict = dict(), # training config
):
ddp_kwargs = DistributedDataParallelKwargs(find_unused_parameters=True)
if logger == "wandb" and not wandb.api.api_key:
logger = None
self.log_samples = log_samples
self.accelerator = Accelerator(
log_with=logger if logger == "wandb" else None,
kwargs_handlers=[ddp_kwargs],
gradient_accumulation_steps=grad_accumulation_steps,
**accelerate_kwargs,
)
self.logger = logger
if self.logger == "wandb":
if exists(wandb_resume_id):
init_kwargs = {"wandb": {"resume": "allow", "name": wandb_run_name, "id": wandb_resume_id}}
else:
init_kwargs = {"wandb": {"resume": "allow", "name": wandb_run_name}}
if not model_cfg_dict:
model_cfg_dict = {
"epochs": epochs,
"learning_rate": learning_rate,
"num_warmup_updates": num_warmup_updates,
"batch_size_per_gpu": batch_size_per_gpu,
"batch_size_type": batch_size_type,
"max_samples": max_samples,
"grad_accumulation_steps": grad_accumulation_steps,
"max_grad_norm": max_grad_norm,
"noise_scheduler": noise_scheduler,
}
model_cfg_dict["gpus"] = self.accelerator.num_processes
self.accelerator.init_trackers(
project_name=wandb_project,
init_kwargs=init_kwargs,
config=model_cfg_dict,
)
elif self.logger == "tensorboard":
from torch.utils.tensorboard import SummaryWriter
self.writer = SummaryWriter(log_dir=f"runs/{wandb_run_name}")
self.model = model
if self.is_main:
self.ema_model = EMA(model, include_online_model=False, **ema_kwargs)
self.ema_model.to(self.accelerator.device)
print(f"Using logger: {logger}")
if grad_accumulation_steps > 1:
print(
"Gradient accumulation checkpointing with per_updates now, old logic per_steps used with before f992c4e"
)
self.epochs = epochs
self.num_warmup_updates = num_warmup_updates
self.save_per_updates = save_per_updates
self.keep_last_n_checkpoints = keep_last_n_checkpoints
self.last_per_updates = default(last_per_updates, save_per_updates)
self.checkpoint_path = default(checkpoint_path, "ckpts/test_f5-tts")
self.batch_size_per_gpu = batch_size_per_gpu
self.batch_size_type = batch_size_type
self.max_samples = max_samples
self.grad_accumulation_steps = grad_accumulation_steps
self.max_grad_norm = max_grad_norm
# mel vocoder config
self.vocoder_name = mel_spec_type
self.is_local_vocoder = is_local_vocoder
self.local_vocoder_path = local_vocoder_path
self.noise_scheduler = noise_scheduler
self.duration_predictor = duration_predictor
if bnb_optimizer:
import bitsandbytes as bnb
self.optimizer = bnb.optim.AdamW8bit(model.parameters(), lr=learning_rate)
else:
self.optimizer = AdamW(model.parameters(), lr=learning_rate)
self.model, self.optimizer = self.accelerator.prepare(self.model, self.optimizer)
@property
def is_main(self):
return self.accelerator.is_main_process
def save_checkpoint(self, update, last=False):
self.accelerator.wait_for_everyone()
if self.is_main:
checkpoint = dict(
model_state_dict=self.accelerator.unwrap_model(self.model).state_dict(),
optimizer_state_dict=self.accelerator.unwrap_model(self.optimizer).state_dict(),
ema_model_state_dict=self.ema_model.state_dict(),
scheduler_state_dict=self.scheduler.state_dict(),
update=update,
)
if not os.path.exists(self.checkpoint_path):
os.makedirs(self.checkpoint_path)
if last:
self.accelerator.save(checkpoint, f"{self.checkpoint_path}/model_last.pt")
print(f"Saved last checkpoint at update {update}")
else:
if self.keep_last_n_checkpoints == 0:
return
self.accelerator.save(checkpoint, f"{self.checkpoint_path}/model_{update}.pt")
if self.keep_last_n_checkpoints > 0:
# Updated logic to exclude pretrained model from rotation
checkpoints = [
f
for f in os.listdir(self.checkpoint_path)
if f.startswith("model_")
and not f.startswith("pretrained_") # Exclude pretrained models
and f.endswith(".pt")
and f != "model_last.pt"
]
checkpoints.sort(key=lambda x: int(x.split("_")[1].split(".")[0]))
while len(checkpoints) > self.keep_last_n_checkpoints:
oldest_checkpoint = checkpoints.pop(0)
os.remove(os.path.join(self.checkpoint_path, oldest_checkpoint))
print(f"Removed old checkpoint: {oldest_checkpoint}")
def load_checkpoint(self):
if (
not exists(self.checkpoint_path)
or not os.path.exists(self.checkpoint_path)
or not any(filename.endswith((".pt", ".safetensors")) for filename in os.listdir(self.checkpoint_path))
):
return 0
self.accelerator.wait_for_everyone()
if "model_last.pt" in os.listdir(self.checkpoint_path):
latest_checkpoint = "model_last.pt"
else:
# Updated to consider pretrained models for loading but prioritize training checkpoints
all_checkpoints = [
f
for f in os.listdir(self.checkpoint_path)
if (f.startswith("model_") or f.startswith("pretrained_")) and f.endswith((".pt", ".safetensors"))
]
# First try to find regular training checkpoints
training_checkpoints = [f for f in all_checkpoints if f.startswith("model_") and f != "model_last.pt"]
if training_checkpoints:
latest_checkpoint = sorted(
training_checkpoints,
key=lambda x: int("".join(filter(str.isdigit, x))),
)[-1]
else:
# If no training checkpoints, use pretrained model
latest_checkpoint = next(f for f in all_checkpoints if f.startswith("pretrained_"))
if latest_checkpoint.endswith(".safetensors"): # always a pretrained checkpoint
from safetensors.torch import load_file
checkpoint = load_file(f"{self.checkpoint_path}/{latest_checkpoint}", device="cpu")
checkpoint = {"ema_model_state_dict": checkpoint}
elif latest_checkpoint.endswith(".pt"):
# checkpoint = torch.load(f"{self.checkpoint_path}/{latest_checkpoint}", map_location=self.accelerator.device) # rather use accelerator.load_state ಥ_ಥ
checkpoint = torch.load(
f"{self.checkpoint_path}/{latest_checkpoint}", weights_only=True, map_location="cpu"
)
# patch for backward compatibility, 305e3ea
for key in ["ema_model.mel_spec.mel_stft.mel_scale.fb", "ema_model.mel_spec.mel_stft.spectrogram.window"]:
if key in checkpoint["ema_model_state_dict"]:
del checkpoint["ema_model_state_dict"][key]
if self.is_main:
self.ema_model.load_state_dict(checkpoint["ema_model_state_dict"])
if "update" in checkpoint or "step" in checkpoint:
# patch for backward compatibility, with before f992c4e
if "step" in checkpoint:
checkpoint["update"] = checkpoint["step"] // self.grad_accumulation_steps
if self.grad_accumulation_steps > 1 and self.is_main:
print(
"F5-TTS WARNING: Loading checkpoint saved with per_steps logic (before f992c4e), will convert to per_updates according to grad_accumulation_steps setting, may have unexpected behaviour."
)
# patch for backward compatibility, 305e3ea
for key in ["mel_spec.mel_stft.mel_scale.fb", "mel_spec.mel_stft.spectrogram.window"]:
if key in checkpoint["model_state_dict"]:
del checkpoint["model_state_dict"][key]
self.accelerator.unwrap_model(self.model).load_state_dict(checkpoint["model_state_dict"])
self.accelerator.unwrap_model(self.optimizer).load_state_dict(checkpoint["optimizer_state_dict"])
if self.scheduler:
self.scheduler.load_state_dict(checkpoint["scheduler_state_dict"])
update = checkpoint["update"]
else:
checkpoint["model_state_dict"] = {
k.replace("ema_model.", ""): v
for k, v in checkpoint["ema_model_state_dict"].items()
if k not in ["initted", "update", "step"]
}
self.accelerator.unwrap_model(self.model).load_state_dict(checkpoint["model_state_dict"])
update = 0
del checkpoint
gc.collect()
return update
def train(self, train_dataset: Dataset, num_workers=16, resumable_with_seed: int = None):
if self.log_samples:
from f5_tts.infer.utils_infer import cfg_strength, load_vocoder, nfe_step, sway_sampling_coef
vocoder = load_vocoder(
vocoder_name=self.vocoder_name, is_local=self.is_local_vocoder, local_path=self.local_vocoder_path
)
target_sample_rate = self.accelerator.unwrap_model(self.model).mel_spec.target_sample_rate
log_samples_path = f"{self.checkpoint_path}/samples"
os.makedirs(log_samples_path, exist_ok=True)
if exists(resumable_with_seed):
generator = torch.Generator()
generator.manual_seed(resumable_with_seed)
else:
generator = None
if self.batch_size_type == "sample":
train_dataloader = DataLoader(
train_dataset,
collate_fn=collate_fn,
num_workers=num_workers,
pin_memory=True,
persistent_workers=True,
batch_size=self.batch_size_per_gpu,
shuffle=True,
generator=generator,
)
elif self.batch_size_type == "frame":
self.accelerator.even_batches = False
sampler = SequentialSampler(train_dataset)
batch_sampler = DynamicBatchSampler(
sampler,
self.batch_size_per_gpu,
max_samples=self.max_samples,
random_seed=resumable_with_seed, # This enables reproducible shuffling
drop_residual=False,
)
train_dataloader = DataLoader(
train_dataset,
collate_fn=collate_fn,
num_workers=num_workers,
pin_memory=True,
persistent_workers=True,
batch_sampler=batch_sampler,
)
else:
raise ValueError(f"batch_size_type must be either 'sample' or 'frame', but received {self.batch_size_type}")
# accelerator.prepare() dispatches batches to devices;
# which means the length of dataloader calculated before, should consider the number of devices
warmup_updates = (
self.num_warmup_updates * self.accelerator.num_processes
) # consider a fixed warmup steps while using accelerate multi-gpu ddp
# otherwise by default with split_batches=False, warmup steps change with num_processes
total_updates = math.ceil(len(train_dataloader) / self.grad_accumulation_steps) * self.epochs
decay_updates = total_updates - warmup_updates
warmup_scheduler = LinearLR(self.optimizer, start_factor=1e-8, end_factor=1.0, total_iters=warmup_updates)
decay_scheduler = LinearLR(self.optimizer, start_factor=1.0, end_factor=1e-8, total_iters=decay_updates)
self.scheduler = SequentialLR(
self.optimizer, schedulers=[warmup_scheduler, decay_scheduler], milestones=[warmup_updates]
)
train_dataloader, self.scheduler = self.accelerator.prepare(
train_dataloader, self.scheduler
) # actual multi_gpu updates = single_gpu updates / gpu nums
start_update = self.load_checkpoint()
global_update = start_update
if exists(resumable_with_seed):
orig_epoch_step = len(train_dataloader)
start_step = start_update * self.grad_accumulation_steps
skipped_epoch = int(start_step // orig_epoch_step)
skipped_batch = start_step % orig_epoch_step
skipped_dataloader = self.accelerator.skip_first_batches(train_dataloader, num_batches=skipped_batch)
else:
skipped_epoch = 0
for epoch in range(skipped_epoch, self.epochs):
self.model.train()
if exists(resumable_with_seed) and epoch == skipped_epoch:
progress_bar_initial = math.ceil(skipped_batch / self.grad_accumulation_steps)
current_dataloader = skipped_dataloader
else:
progress_bar_initial = 0
current_dataloader = train_dataloader
# Set epoch for the batch sampler if it exists
if hasattr(train_dataloader, "batch_sampler") and hasattr(train_dataloader.batch_sampler, "set_epoch"):
train_dataloader.batch_sampler.set_epoch(epoch)
progress_bar = tqdm(
range(math.ceil(len(train_dataloader) / self.grad_accumulation_steps)),
desc=f"Epoch {epoch + 1}/{self.epochs}",
unit="update",
disable=not self.accelerator.is_local_main_process,
initial=progress_bar_initial,
)
for batch in current_dataloader:
with self.accelerator.accumulate(self.model):
text_inputs = batch["text"]
mel_spec = batch["mel"].permute(0, 2, 1)
mel_lengths = batch["mel_lengths"]
# TODO. add duration predictor training
if self.duration_predictor is not None and self.accelerator.is_local_main_process:
dur_loss = self.duration_predictor(mel_spec, lens=batch.get("durations"))
self.accelerator.log({"duration loss": dur_loss.item()}, step=global_update)
loss, cond, pred = self.model(
mel_spec, text=text_inputs, lens=mel_lengths, noise_scheduler=self.noise_scheduler
)
self.accelerator.backward(loss)
if self.max_grad_norm > 0 and self.accelerator.sync_gradients:
self.accelerator.clip_grad_norm_(self.model.parameters(), self.max_grad_norm)
self.optimizer.step()
self.scheduler.step()
self.optimizer.zero_grad()
if self.accelerator.sync_gradients:
if self.is_main:
self.ema_model.update()
global_update += 1
progress_bar.update(1)
progress_bar.set_postfix(update=str(global_update), loss=loss.item())
if self.accelerator.is_local_main_process:
self.accelerator.log(
{"loss": loss.item(), "lr": self.scheduler.get_last_lr()[0]}, step=global_update
)
if self.logger == "tensorboard":
self.writer.add_scalar("loss", loss.item(), global_update)
self.writer.add_scalar("lr", self.scheduler.get_last_lr()[0], global_update)
if global_update % self.last_per_updates == 0 and self.accelerator.sync_gradients:
self.save_checkpoint(global_update, last=True)
if global_update % self.save_per_updates == 0 and self.accelerator.sync_gradients:
self.save_checkpoint(global_update)
if self.log_samples and self.accelerator.is_local_main_process:
ref_audio_len = mel_lengths[0]
infer_text = [
text_inputs[0] + ([" "] if isinstance(text_inputs[0], list) else " ") + text_inputs[0]
]
with torch.inference_mode():
generated, _ = self.accelerator.unwrap_model(self.model).sample(
cond=mel_spec[0][:ref_audio_len].unsqueeze(0),
text=infer_text,
duration=ref_audio_len * 2,
steps=nfe_step,
cfg_strength=cfg_strength,
sway_sampling_coef=sway_sampling_coef,
)
generated = generated.to(torch.float32)
gen_mel_spec = generated[:, ref_audio_len:, :].permute(0, 2, 1).to(self.accelerator.device)
ref_mel_spec = batch["mel"][0].unsqueeze(0)
if self.vocoder_name == "vocos":
gen_audio = vocoder.decode(gen_mel_spec).cpu()
ref_audio = vocoder.decode(ref_mel_spec).cpu()
elif self.vocoder_name == "bigvgan":
gen_audio = vocoder(gen_mel_spec).squeeze(0).cpu()
ref_audio = vocoder(ref_mel_spec).squeeze(0).cpu()
torchaudio.save(
f"{log_samples_path}/update_{global_update}_gen.wav", gen_audio, target_sample_rate
)
torchaudio.save(
f"{log_samples_path}/update_{global_update}_ref.wav", ref_audio, target_sample_rate
)
self.model.train()
self.save_checkpoint(global_update, last=True)
self.accelerator.end_training()