mshukor's picture
mshukor HF staff
Update app.py
2d0b5a3
import os
os.system('cd TimeSformer;'
'pip install .; cd ..')
os.system('ls -l')
os.system('pwd')
import os, sys
sys.path.append("/home/user/app/TimeSformer/")
import torch
from torchvision import transforms
from transformers import AutoTokenizer
from PIL import Image
import json
import os
from torchvision import transforms
from models.epalm import ePALM
import os
from transformers import AutoTokenizer
# import ruamel_yaml as yaml
from ruamel.yaml import YAML
import torch
import gradio as gr
yaml=YAML(typ='safe')
use_cuda = torch.cuda.is_available()
device = torch.device('cuda') if use_cuda else torch.device('cpu')
device_type = 'cuda' if use_cuda else 'cpu'
## Load model
### Captioning
config = 'configs/video/ePALM_video_caption_msrvtt.yaml'
config = yaml.load(open(config, 'r'))
text_model = 'facebook/opt-2.7b'
vision_model_name = 'timesformer'
start_layer_idx = 19
end_layer_idx = 31
low_cpu = True
MODEL = ePALM(opt_model_name=text_model,
vision_model_name=vision_model_name,
use_vis_prefix=True,
start_layer_idx=start_layer_idx,
end_layer_idx=end_layer_idx,
return_hidden_state_vision=True,
config=config,
low_cpu=low_cpu
)
print("Model Built")
MODEL.to(device)
checkpoint_path = 'checkpoints/float32/ePALM_video_caption_msrvtt/checkpoint_best.pth'
checkpoint = torch.load(checkpoint_path, map_location='cpu')
state_dict = checkpoint['model']
msg = MODEL.load_state_dict(state_dict,strict=False)
MODEL.bfloat16()
## Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(text_model, use_fast=False)
eos_token = tokenizer.eos_token
pad_token = tokenizer.pad_token
special_answer_token = '</a>'
special_tokens_dict = {'additional_special_tokens': [special_answer_token]}
tokenizer.add_special_tokens(special_tokens_dict)
image_size = 224
normalize = transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711))
type_transform = transforms.Lambda(lambda x: x.float().div(255.0))
test_transform = transforms.Compose([
transforms.Resize((image_size,image_size),interpolation=Image.BICUBIC),
type_transform,
normalize,
])
from dataset.video_utils import VIDEO_READER_FUNCS
video_reader = VIDEO_READER_FUNCS['decord']
def read_video(path, num_frames=16):
frames, frame_indices, video_duration = video_reader(
path, num_frames, 'rand', max_num_frames=-1
)
video = test_transform(frames)
return video.permute(1, 0, 2, 3).unsqueeze(0)
do_sample=False
num_beams=5
max_length=30
def inference(image, task_type, instruction):
if task_type == 'Video Captioning':
text = ['']
text_input = tokenizer(text, padding='longest', return_tensors="pt").to(device)
model = MODEL
else:
raise NotImplemented
image = read_video(image)
with torch.autocast(device_type=device_type, dtype=torch.bfloat16, enabled=True):
out = model(image=image, text=text_input, mode='generate', return_dict=True, max_length=max_length,
do_sample=do_sample, num_beams=num_beams)
if 'Captioning' in task_type:
for i, o in enumerate(out):
res = tokenizer.decode(o)
response = res.split('</s>')[1].replace(pad_token, '').replace('</s>', '').replace(eos_token, '') # skip_special_tokens=True
else:
for o in out:
o_list = o.tolist()
response = tokenizer.decode(o_list).split(special_answer_token)[1].replace(pad_token, '').replace('</s>', '').replace(eos_token, '') # skip_special_tokens=True
return response
inputs = [gr.Video(source="upload", type="filepath"), gr.inputs.Radio(choices=['Video Captioning'], type="value", default="Video Captioning", label="Task"), gr.inputs.Textbox(lines=1, label="Instruction")]
outputs = ['text']
examples = [
['examples/videos/video7014.mp4', 'Video Captioning', None],
['examples/videos/video7017.mp4', 'Video Captioning', None],
['examples/videos/video7019.mp4', 'Video Captioning', None],
['examples/videos/video7021.mp4', 'Video Captioning', None],
['examples/videos/video7021.mp4', 'Video Captioning', None],
]
title = "eP-ALM for Video-Text tasks"
description = "Gradio Demo for eP-ALM. For this demo, we use 2.7B OPT. As the model runs on CPUs and float16 mixed precision is not supported on CPUs, the generation can take up to 2 mins."
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2303.11403' target='_blank'>Paper</a> | <a href='https://github.com/mshukor/eP-ALM' target='_blank'>Github Repo</a></p>"
io = gr.Interface(fn=inference, inputs=inputs, outputs=outputs,
title=title, description=description, article=article, examples=examples, cache_examples=False)
io.launch()