medfusion-app / tests /dataset /test_dataset_chexpert.py
mueller-franzes's picture
init
f85e212
raw
history blame
1.76 kB
from pathlib import Path
from torchvision.utils import save_image
import pandas as pd
import torch
import torch.nn.functional as F
from medical_diffusion.data.datasets import CheXpert_Dataset
import math
path_out = Path().cwd()/'results'/'test'/'CheXpert'
path_out.mkdir(parents=True, exist_ok=True)
# path_root = Path('/mnt/hdd/datasets/chest/CheXpert/ChecXpert-v10/train')
path_root = Path('/media/NAS/Chexpert_dataset/CheXpert-v1.0/train')
mode = path_root.name
labels = pd.read_csv(path_root.parent/f'{mode}.csv', index_col='Path')
labels = labels[labels['Frontal/Lateral'] == 'Frontal']
labels.loc[labels['Sex'] == 'Unknown', 'Sex'] = 'Female' # Must be "female" to match paper data
labels.fillna(3, inplace=True)
str_2_int = {'Sex': {'Male':0, 'Female':1}, 'Frontal/Lateral':{'Frontal':0, 'Lateral':1}, 'AP/PA':{'AP':0, 'PA':1, 'LL':2, 'RL':3}}
labels.replace(str_2_int, inplace=True)
# Get patients
labels['patient'] = labels.index.str.split('/').str[2]
labels.set_index('patient',drop=True, append=True, inplace=True)
for c in labels.columns:
print(labels[c].value_counts(dropna=False))
ds = CheXpert_Dataset(
crawler_ext='jpg',
image_resize=(256, 256),
# image_crop=(256, 256),
path_root=path_root,
)
x = torch.stack([ds[n]['source'] for n in range(4)])
b = x.shape[0]
save_image(x, path_out/'samples_down_0.png', nrwos=int(math.sqrt(b)), normalize=True, scale_each=True )
size_0 = torch.tensor(x.shape[2:])
for i in range(3):
new_size = torch.div(size_0, 2**(i+1), rounding_mode='floor' )
x_i = F.interpolate(x, size=tuple(new_size), mode='nearest', align_corners=None)
print(x_i.shape)
save_image(x_i, path_out/f'samples_down_{i+1}.png', nrwos=int(math.sqrt(b)), normalize=True, scale_each=True)