File size: 7,860 Bytes
40fd220
 
 
 
 
 
 
 
323b32d
40fd220
0439da4
40fd220
 
 
 
 
0439da4
 
 
 
 
 
 
 
 
a0cd1a3
40fd220
 
 
 
 
 
 
 
 
a0cd1a3
 
791b01a
a0cd1a3
 
 
 
 
40fd220
a0cd1a3
40fd220
a17b8f9
 
 
 
 
 
 
 
 
 
40fd220
 
 
 
 
 
 
 
 
 
 
 
 
 
d518481
40fd220
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d518481
0439da4
 
 
 
 
 
 
40fd220
 
 
 
 
a0cd1a3
40fd220
 
 
 
c6713c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40fd220
 
 
 
 
 
 
 
 
 
a0cd1a3
40fd220
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a0cd1a3
40fd220
a0cd1a3
40fd220
 
 
d518481
40fd220
 
 
 
 
 
 
 
 
 
 
 
 
 
d518481
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
import os
import gc
import tempfile
import uuid
import pandas as pd

from gitingest import ingest
from llama_index.core import Settings
from llama_index.llms.sambanovasystems import SambaNovaCloud
from llama_index.core import PromptTemplate
from llama_index.embeddings.mixedbreadai import MixedbreadAIEmbedding
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader
from llama_index.core.node_parser import MarkdownNodeParser

import streamlit as st

# Fetch API keys securely from Hugging Face secrets
SAMBANOVA_API_KEY = os.getenv("SAMBANOVA_API_KEY")
MXBAI_API_KEY = os.getenv("MXBAI_API_KEY")

# Ensure both API keys are available
if not SAMBANOVA_API_KEY:
    raise ValueError("SAMBANOVA_API_KEY is not set in the Hugging Face secrets.")
if not MXBAI_API_KEY:
    raise ValueError("MXBAI_API_KEY is not set in the Hugging Face secrets.")

if "id" not in st.session_state:
    st.session_state.id = uuid.uuid4()
    st.session_state.file_cache = {}

session_id = st.session_state.id
client = None

@st.cache_resource
def load_llm():
    # Instantiate the SambaNova model
    llm = SambaNovaCloud(
        model="DeepSeek-R1-Distill-Llama-70B",
        context_window=100000,
        max_tokens=1024,
        temperature=0.7,
        top_k=1,
        top_p=0.01,
    )
    return llm

def reset_chat():
    st.session_state.messages = []
    st.session_state.context = None
    gc.collect()

def process_with_gitingets(github_url):
    # or from URL
    summary, tree, content = ingest(github_url)
    return summary, tree, content
    
with st.sidebar:
    st.header(f"Add your GitHub repository!")
    
    github_url = st.text_input("Enter GitHub repository URL", placeholder="GitHub URL")
    load_repo = st.button("Load Repository")

    if github_url and load_repo:
        try:
            with tempfile.TemporaryDirectory() as temp_dir:
                st.write("Processing your repository...")
                repo_name = github_url.split('/')[-1]
                file_key = f"{session_id}-{repo_name}"
                
                if file_key not in st.session_state.get('file_cache', {}):

                    if os.path.exists(temp_dir):
                        summary, tree, content = process_with_gitingets(github_url)

                        # Write summary to a markdown file
                        with open("content.md", "w", encoding="utf-8") as f:
                            f.write(content)

                        # Write summary to a markdown file in temp directory
                        content_path = os.path.join(temp_dir, f"{repo_name}_content.md")
                        with open(content_path, "w", encoding="utf-8") as f:
                            f.write(content)
                        loader = SimpleDirectoryReader(
                            input_dir=temp_dir,
                        )
                    else:    
                        st.error('Could not find the file you uploaded, please check again...')
                        st.stop()
                    
                    docs = loader.load_data()

                    # setup llm & embedding model
                    llm=load_llm()

                    # Mixedbread AI embedding setup
                    embed_model = MixedbreadAIEmbedding(
                        api_key=MXBAI_API_KEY,  # Use the API key from Hugging Face secret
                        model_name="mixedbread-ai/mxbai-embed-large-v1",  # Specify the model name
                    )

                    # Creating an index over loaded data
                    Settings.embed_model = embed_model
                    node_parser = MarkdownNodeParser()
                    index = VectorStoreIndex.from_documents(documents=docs, transformations=[node_parser], show_progress=True)

                    # Create the query engine
                    Settings.llm = llm
                    query_engine = index.as_query_engine(streaming=True)

                    # ====== Customise prompt template ======
                    qa_prompt_tmpl_str = """
                    You are an AI assistant specialized in analyzing GitHub repositories.

                    Repository structure:
                    {tree}
                    ---------------------

                    Context information from the repository:
                    {context_str}
                    ---------------------

                    Given the repository structure and context above, provide a clear and precise answer to the query. 
                    Focus on the repository's content, code structure, and implementation details. 
                    If the information is not available in the context, respond with 'I don't have enough information about that aspect of the repository.'

                    Query: {query_str}
                    Answer: """
                    qa_prompt_tmpl = PromptTemplate(qa_prompt_tmpl_str)

                    query_engine.update_prompts(
                        {"response_synthesizer:text_qa_template": qa_prompt_tmpl}
                    )
                    
                    st.session_state.file_cache[file_key] = query_engine
                else:
                    query_engine = st.session_state.file_cache[file_key]

                # Inform the user that the file is processed and display the PDF uploaded
                st.success("Ready to Chat!")
        except Exception as e:
            st.error(f"An error occurred: {e}")
            st.stop()     

col1, col2 = st.columns([6, 1])

with col1:
    st.header(f"Chat with GitHub using RAG </>")

with col2:
    st.button("Clear ↺", on_click=reset_chat)

# Initialize chat history
if "messages" not in st.session_state:
    reset_chat()

# Display chat messages from history on app rerun
for message in st.session_state.messages:
    with st.chat_message(message["role"]):
        st.markdown(message["content"])

# Accept user input
if prompt := st.chat_input("What's up?"):
    # Add user message to chat history
    st.session_state.messages.append({"role": "user", "content": prompt})
    # Display user message in chat message container
    with st.chat_message("user"):
        st.markdown(prompt)

    # Display assistant response in chat message container
    with st.chat_message("assistant"):
        message_placeholder = st.empty()
        full_response = ""
        
        try:
            # Get the repo name from the GitHub URL
            repo_name = github_url.split('/')[-1]
            file_key = f"{session_id}-{repo_name}"
            
            # Get query engine from session state
            query_engine = st.session_state.file_cache.get(file_key)
            
            if query_engine is None:
                st.error("Please load a repository first!")
                st.stop()
                
            # Use the query engine
            response = query_engine.query(prompt)
            
            # Handle streaming response
            if hasattr(response, 'response_gen'):
                for chunk in response.response_gen:
                    if isinstance(chunk, str): 
                        full_response += chunk
                        message_placeholder.markdown(full_response + "▌")
            else:
                # Handle non-streaming response
                full_response = str(response)
                message_placeholder.markdown(full_response)

            message_placeholder.markdown(full_response)
        except Exception as e:
            st.error(f"An error occurred while processing your query: {str(e)}")
            full_response = "Sorry, I encountered an error while processing your request."
            message_placeholder.markdown(full_response)

    # Add assistant response to chat history
    st.session_state.messages.append({"role": "assistant", "content": full_response})